Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
xét tg bea và tg bem có
be chung
góc b1= góc b2[gt]
ba=bm[gt]
suy ra tg bea = tg bem[c.g.c]
b,
vì tg bea = tg bem[cmt]
suy ra góc a = góc m[tương ứng]
mà a = 90 độ
suy ra góc m = 90 độ
suy ra em vg góc bc
c,
tớ đoán là bằng nhau nhưng chưa biết cách tính
a) Xét tam giác BEA và tam giác BEM ta có:
BA=BM (gt)
góc ABE=góc MBE (gt)
BE là cạnh chung
=> tam giác BEA=tam giác BEM ( c-g-c)
b) Vì tam giác BEA= tam giác BEM
=> góc BME= góc BAE (góc tương ứng)
=>góc BME= 90* (góc BAE=90*)
=>EM vuông góc BC
c) ta có :
góc BME+góc EMC= 180*(kề bù)
=>90*+EMC=180*
=>EMC=90*
Mặt khác:
ABC=90*-C
Ta Có
EMC+MCE+MEC=180*
=> 90*+MCE+MEC=180*
=>C+MEC=90*
=>MEC=90*-C
=>ABC=MEC=90*-C
Vậy ABC=MEC
tự vẽ hình
a) xét tam giác ABD và tam giác AED có:
AB=AE (gt)
góc A1 = góc A2 ( AD là p/giác của góc A)
AD chung
=> tam giác ABD = tam giác AED
câu d) mới hok hồi sáng giờ mk chưa bít vận dụng hết hì để xem lại bài đã mk giải cho
a) Xét tam giác AMB và tam giác DMC có:
BM = CM (gt)
AM =DM (gt)
\(\widehat{AMB}=\widehat{DMC}\) (Hai góc đối đỉnh)
\(\Rightarrow\Delta AMB=\Delta CMD\left(c-g-c\right)\)
b) Do \(\Delta AMB=\Delta CMD\Rightarrow\widehat{BAM}=\widehat{DCM}\)
Chúng lại ở vị trí so le trong nên AB //CD.
c) Xét tam giác AME có MH là đường cao đồng thời trung tuyến nên tam giác AME cân tại M.
Suy ra MA = ME
Lại có MA = MD nên ME = MD.
d) Xét tam giac AED có MA = ME = MD nê tam giác AED vuông tại E.
Suy ra ED // BC
Xét tam giác cân MED có MK là trung tuyến nên đồng thời là đường cao.
Vậy thì \(MK\perp ED\Rightarrow MK\perp BC\)