K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔADB và ΔADE có

AD chung

góc BAD=góc EAD

AB=AE

=>ΔADB=ΔADE

=>góc ABD=góc AED

b: Xét ΔAEF vuông tại A và ΔABC vuông tại A có

AE=AB

góc AEF=góc ABC

=>ΔAEF=ΔABC

=>AC=AF

a, Xét tam giác ADB và tam giác ADE có:

AD chung

góc BAD = góc EAD

AB = AE

=> Tam giác ADB = tam giác ADE

b, Câu này mình sửa lại đề là AD là trung trực của BE mới đúng nhé!

Từ câu a => BD = BE => D thuộc trung trực của BE (1)

Ta có AB = AE => A thuộc trung trực của BE (2)

Từ 1 và 2 suy ra AD là trung trực của BE

c, Từ câu a nên ta có góc ABD = góc AED => góc FBD = góc CED (cùng bù với 2 góc = nhau)

Xét tam giác FBD và tam giác CED có:

góc FBD = góc CED

BD = ED

góc BDF = góc EDC (đối đỉnh)

=> tam giác FBD = tam giác CED (g.c.g)

=> góc DBF = góc DEC (góc tương ứng)

mình sửa lại đề là góc BFD = góc ECD nhé!

=> góc BFD = góc ECD (góc tương ứng)

7 tháng 5 2017

vẽ mk hình dc k

Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

1:

a: Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

mà AB<AC

nên BD<CD

b: AB<AC
=>góc B>góc C

góc ADB=góc C+góc CAD

góc ADC=góc B+góc BAD

mà góc C<góc B và góc CAD=góc BAD

nên góc ADB<góc ADC