Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác MNHQ có
K là trung điểm của MH
K là trung điểm của NQ
Do đó: MNHQ là hình bình hành
Suy ra: MQ=HN
a: Xét ΔMKH có MK=MH
nên ΔMKH cân tại M
b: Xét ΔKMN và ΔHMP có
MK=MH
\(\widehat{KMN}=\widehat{HMP}\)
MN=MP
Do đó: ΔKMN=ΔHMP
c: Ta có: ΔMKH cân tại M
mà MQ là đường trung tuyến
nên MQ là đường cao
1) Xét tam giác MNH và tam giác MKH có:
+ MN = MK (gt).
+ MH chung.
+ NH = KH (H là trung điểm NK).
=> Tam giác MNH = Tam giác MKH (c - c - c).
3) Ta có: MD = MN + ND; ME = MK + KE.
Mà ND = KE (gt); MN = MK (gt).
=> MD = ME.
Xét tam giác MNK có: MN = MK (gt).
=> Tam giác MNK cân tại M.
Mà MH là đường trung tuyến (H là trung điểm NK).
=> MH là đường phân giác \(\widehat{M}\) (Tính chất các đường trong tam giác cân).
Xét tam giác HMD và tam giác HME:
+ MD = ME (cmt).
+ \(\widehat{DMH}=\widehat{EMH}\) (MH là đường phân giác \(\widehat{M}\)).
+ MH chung.
=> Tam giác HMD = Tam giác HME (c - g - c).
4) Xét tam giác MDE có: MD = ME (cmtt).
=> Tam giác MDE cân tại M.
Mà MO là đường trung tuyến (O là trung điểm DE).
=> MO là đường phân giác \(\widehat{M}\) (Tính chất các đường trong tam giác cân).
Mà MH là đường phân giác \(\widehat{M}\) (cmt).
=> Ba điểm M, H, O thẳng hàng.
5) Xét tam giác MDE cân tại M có: MO là đường trung tuyến (O là trung điểm DE).
=> MO là đường cao (Tính chất các đường trong tam giác cân).
=> MO \(\perp\) DE. (1)
Xét tam giác MNK cân tại M có: MH là đường trung tuyến (H là trung điểm NK).
=> MH là đường cao (Tính chất các đường trong tam giác cân).
=> MH \(\perp\) NK
Hay MO \(\perp\) NK. (2)
Từ (1) và (2) => NK // DE (Từ vuông góc đến song song).
Xét tứ giác AMBC có
K là trung điểm của AB
K là trung điểm của MC
Do đó: AMBC là hình bình hành
Suy ra: AM//BC và AM=BC(1)
Xét tứ giác ABCN có
E là trung điểm của AC
E là trung điểm của BN
Do đó: ABCN là hình bình hành
Suy ra: AN//BC và AN=BC(2)
Từ (1) và (2) suy ra A là trung điểm của MN