Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Xét tam giác MNP vuông tại M, đường cao MH
* Áp dụng hệ thức : \(MH^2=NH.HP\Rightarrow NH=\frac{MH^2}{HP}=\frac{36}{9}=4\)cm
=> NP = HN + HP = 4 + 9 = 13 cm
* Áp dụng hệ thức : \(MN^2=NH.NP=4.13\Rightarrow MN=2\sqrt{13}\)cm
* Áp dụng hệ thức : \(MP^2=PH.NP=9.13\Rightarrow MP=3\sqrt{13}\)cm
Bài 2 :
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức : \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}\Rightarrow\frac{1}{9}=\frac{1}{25}+\frac{1}{AB^2}\Rightarrow AB=\frac{15}{4}\)cm
( bạn nhập biểu thức trên vào máy tính cầm tay rồi shift solve nhé )
* Áp dụng hệ thức : \(AC.AB=AH.BC\Rightarrow BC=\frac{\frac{15}{4}.5}{3}=\frac{25}{4}\)cm
a: cos N=1/2
=>góc N=60 độ
góc M=90-60=30 độ
Xét ΔMNP vuông tại P có sin M=PN/NM
=>PN/8=sin30=1/2
=>PN=4cm
=>\(PM=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)
b: Xét ΔNMP vuông tại P có sin N=0,6=3/5
=>PM/MN=3/5
=>5/MN=3/5
=>MN=25/3
PN=căn (25/3)^2-5^2=20/3(cm)
Xét ΔNMP vuông tại P có sinN=3/5
nên góc N\(\simeq37^0\)
=>\(\widehat{M}\simeq90^0-37^0=53^0\)
c: Xét ΔMNP vuông tại P có tan N=căn 3
=>PM/PN=căn 3
=>6/PN=căn 3
=>PN=2*căn 3(cm)
MN=căn (2*căn 3)^2+6^2=4*căn 3
Xét ΔMNP vuông tại P có tan N=căn 3
nên góc N=60 độ
=>góc M=30 độ
a: Xét ΔMNP vuông tại M có
\(\sin\widehat{N}=\dfrac{MP}{PN}=\dfrac{4}{5}\)
\(\cos\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{5}\)
\(\tan\widehat{N}=\dfrac{MP}{MN}=\dfrac{4}{3}\)
\(\cot\widehat{N}=\dfrac{MN}{MP}=\dfrac{3}{4}\)
b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔMNP vuông tại M có MH là đường cao ứng với cạnh huyền NP, ta được:
\(\left\{{}\begin{matrix}MH\cdot NP=MN\cdot MP\\MN^2=HN\cdot NP\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}MH=2.4cm\\NH=1.8cm\end{matrix}\right.\)
Áp dụng định lý Pitago:
\(MP=\sqrt{NP^2-MN^2}=8\left(cm\right)\)
Áp dụng hệ thức lượng:
\(MH.NP=MN.MP\Rightarrow MH=\dfrac{MN.MP}{NP}=4,8\left(cm\right)\)
Áp dụng định lý Pitaho cho tam giác vuông MNH:
\(NH=\sqrt{MN^2-MH^2}=3,6\left(cm\right)\)