Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔNAM vuông tại M và ΔNDA vuông tại D có
NA chung
NA=ND(gt)
Do đó: ΔNAM=ΔNDA(cạnh huyền-cạnh góc vuông)
⇒\(\widehat{MNA}=\widehat{DNA}\)(hai góc tương ứng)
mà tia NA nằm giữa hai tia NM,NDnên NA là tia phân giác của \(\widehat{NMD}\)hay NA là tia phan giác của \(\widehat{NMP}\)(đpcm)b) Xét ΔNMD có NM=ND(gt)nên ΔNMD cân tại N(Định nghĩa tam giác cân)Xét ΔNMD cân tại N có \(\widehat{MND}=60^0\)(gt)nên ΔNMD đều(Dấu hiệu nhận biết tam giác đều)c) Ta có: ΔNMP vuông tại M(gt)nên \(\widehat{NMP}+\widehat{MPN}=90^0\)(hai góc nhọn phụ nhau)\(\Leftrightarrow\widehat{MPN}=90^0-\widehat{NMP}=90^0-60^0=30^0\)(1)Ta có: NA là tia phân giác của \(\widehat{MNP}\)(cmt)nên \(\widehat{PNA}=\dfrac{\widehat{MNP}}{2}=\dfrac{60^0}{2}=30^0\)(2)Từ (1) và (2) suy ra \(\widehat{APN}=\widehat{ANP}\)Xét ΔANP có \(\widehat{APN}=\widehat{ANP}\)(cmt)nên ΔANP cân tại A(Định lí đảo của tam giác cân)Ta có: ΔANP cân tại A(gt)mà AD là đường cao ứng với cạnh đáy NP(gt)nên AD là đường trung tuyến ứng với cạnh NP(Định lí tam giác cân)hay D là trung điểm của NP(đpcm)a)
Xét tam giác END và tam giác MND, có
\(\widehat{MND}=\widehat{DNE}=30^o\)(vì ND là tia phân giác)
\(\widehat{M}=\widehat{E}=90^o\)
ND là cạnh chung
\(\Rightarrow\Delta END=\Delta MND\)
\(\RightarrowĐPCM\)
a: Xét ΔNME vuông tại M và ΔNHE vuông tại H có
NE chung
\(\widehat{MNE}=\widehat{HNE}\)
Do đó: ΔNME=ΔNHE
b: \(MP=\sqrt{17^2-15^2}=8\left(cm\right)\)
GiẢi
a , Xét tam giác MNA và tam giác DNA có :
NM=ND (GT)
Góc NMA = góc NDA =90 độ
NA là cạnh chung
=> Tam giác MNA = tam giác DNA (c.g.c)
=> Góc MNA =góc DNA ( hai góc tương ứng)
=. NA là tia phân giác của góc MNP
b, Tam giác MND là tâm giác đều vì mỗi góc đều có só đo = 60 độ
d,Xetstam giác MBA và tam giác DPA có :
BM=DP(GT)
góc MAB = góc DPA ( đối đỉnh)
MA=DA (hai cạnh tương ứng của tam giác MNA=tam giác DNA)
=> Tam giác MBA = tam giác DPA (c.g.c)
=> AB=PA ( hai cạnh tương ứng)
=> Tam giác APB cận tại A
a) Xét hai tam giác vuông tam giác NMD ( M = 90 độ ) và tam giác END ( E = 90 độ ) có
ND là cạnh chung
góc MND = góc END ( vì ND là tia phân giác )
Do đó tam giác NMD = tam giác END ( cạnh huyền - góc nhọn )
b) Ta có tam giác NMD = tam giác END ( cmt )
=> NM = NE ( hai cạnh tương ứng )
Mà góc N = 60 độ
=> tam giác MNE là tam giác đều
c) Ta có tam giác MNE là tam giác đều
=> NM = NE = ME ( 1 )
=> góc NME = 60 độ
Ta có góc NME + góc EMP = 90 độ
Mà góc NME = 60 độ ( cmt )
=> góc EMP = 30 độ ( * )
Ta có tam giác NMP vuông tại M
=> góc N + góc P = 90 độ ( hai góc nhọn phụ nhau )
Mà góc N = 60 độ
=> góc P = 30 độ (**)
Từ (*) và (**) suy ra
tam giác EMP cân tại E
=> EM = EP ( 2 )
Từ (1) và (2) suy ra
NE = EP = 7 cm
Mà NE + EP = NP
7 cm + 7 cm = NP
=> NP = 14 cm
Vậy NP = 14 cm