Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
Do đó: ΔHNM\(\sim\)ΔMNP
b: \(NP=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(MH=\dfrac{MN\cdot MP}{NP}=4.8\left(cm\right)\)
\(HN=\dfrac{MN^2}{NP}=3.6\left(cm\right)\)
=>HP=6,4(cm)
a: Xét ΔMNP vuông tại M và ΔHNM vuông tạiH có
góc N chung
=>ΔMNP đồng dạng với ΔHNM
=>NM/NH=NP/NM
=>NM^2=NH*NP
b: Xét ΔMNP vuông tại M có MH là đường cao
nên MH^2=HN*HP
c: DN/DM=PN/MP=MN/HM
=>DN*HM=DM*MN
a)*Vì \(\Delta MNP\) vuông tại M
\(\Rightarrow MN^2+MP^2=NP^2\)
\(\Rightarrow6^2+8^2=NP^2\)
\(\Rightarrow NP^2=100\)\(\Rightarrow NP=\sqrt{100}=10cm\)
*Xét 2\(\Delta\)vuông HMN và
\(\widehat{HMN}=\widehat{NPM}\)(cùng phụ \(\widehat{MNP}\))
\(\Rightarrow\Delta HMN\sim\Delta HPM\)
tự vẽ hình nhé
a, Xét \(\Delta\) MNP và \(\Delta\) HNM
< MNP chung
<NMP=<NHM(=90\(^0\) )
b,=> \(\dfrac{MN}{HN}=\dfrac{NP}{MN}\)
=> \(MN^2=NP\cdot NH\)
c, xét \(\Delta\) NMP vg tại M, áp dụng định lí Py - ta - go trong tam giác vg có
\(MN^2+MP^2=NP^2\)
=> \(NP^2=144\Rightarrow NP=12cm\)
Ta có \(MN^2=NH\cdot NP\)
Thay số:\(7,2^2=NH\cdot12\Rightarrow NH=4,32cm\)
a: Xét ΔHNM vuông tại H và ΔMNP vuông tại M có
góc N chung
=>ΔHNM đồng dạng với ΔMNP
b: ΔMNP vuông tại M co MH vuông góc NP
nên MH^2=HN*HP