Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMAP và ΔBAN có
AM=AB
\(\widehat{MAP}=\widehat{BAN}\)(hai góc đối đỉnh)
AP=AN
Do đó: ΔMAP=ΔBAN
b: Ta có: ΔMAP=ΔBAN
=>\(\widehat{AMP}=\widehat{ABN}\)
mà hai góc này là hai góc ở vị trí so le trong
nên MP//BN
c: Xét ΔAIB có
AH là đường cao
AH là đường trung tuyến
Do đó:ΔAIB cân tại A
=>AI=AB
mà AB=AM
nên AI=AM
Hình bạn tự vẽ nhé
a) Xét ΔABM và ΔACM có:
AB=AC (gt)
AM là cạnh chung
BM=CN (M là trung điểm của BC)
=> ΔABM=ΔACM (c-c-c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
Mà ta có: \(\widehat{AMB}+\widehat{AMC}=90^o\)
=> \(\widehat{AMB}+\widehat{AMB}=180^o\)
=> \(\widehat{AMB}=90^o\)
=> AM vuông góc với BC
b) Theo câu a ta có: ΔABM=ΔACMB
=> \(\widehat{ABM}=\widehat{ACM}\)
Mà: \(\widehat{ABD}=180^o-\widehat{ABM}=180^o-\widehat{ACM}=\widehat{ACE}\)
Xét ΔABD và ΔACE có:
AB=AC (gt)
\(\widehat{ABD}=\widehat{ACE}\) (chứng minh trên)
BD=CE (gt)
=> ΔABD=ΔACE (c-g-c)
=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)
Cũng theo câu a thì ΔABM=ΔACM
=> \(\widehat{BAM}=\widehat{CAM}\)
=> \(\widehat{BAM}+\widehat{BAD}=\widehat{CAM}+\widehat{CAE}\)
=> \(\widehat{DAM}=\widehat{EAM}\)
=> AM là tia phân giác của góc DAE
a, xét tam giác AMB và tam giác AMC có : AM chung
BM = CM do M là trung điểm của BC (gt)
AB = AC (gt)
=> tam giác AMB = tam giác AMC (c-c-c)
=> góc AMB = góc AMC (đn)
mà góc AMB + góc AMC = 180 (kb)
=> góc AMB = 90
=> AM _|_ BC (đn)
b, góc ABC = góc ACB do tam giác ABC cân tại A (gt)
góc ABC + góc ABD = 180 (kb)
góc ACB + góc ACE = 180 (kb)
=> góc ABD = góc ACE
xét tam giác ABD và tam giác ACE có : BD = CE (gt)
AB = AC (gt)
=> tam giác ABD = tam giác ACE (c-g-c)
a) xét \(\Delta MNP\)VUÔNG TẠI M CÓ
\(\Rightarrow NP^2=MN^2+MP^2\left(PYTAGO\right)\)
THAY\(NP^2=4^2+3^2\)
\(NP^2=16+9\)
\(NP^2=25\)
\(\Rightarrow NP=\sqrt{25}=5\left(cm\right)\)
XÉT \(\Delta MNP\)CÓ
\(\Rightarrow NP>MN>MP\left(5>4>3\right)\)
\(\Rightarrow\widehat{M}>\widehat{P}>\widehat{N}\)( QUAN HỆ GIỮA CẠNH VÀ GÓC ĐỐI DIỆN)
B) xét \(\Delta\text{ CPM}\)VÀ\(\Delta\text{CPA}\)CÓ
\(PM=PA\left(GT\right)\)
\(\widehat{MPC}=\widehat{APC}=90^o\)
PC LÀ CAH CHUNG
=>\(\Delta\text{ CPM}\)=\(\Delta\text{CPA}\)(C-G-C)
c)
\(\Delta CPM=\Delta CPA\left(cmt\right)\)
\(\Rightarrow\widehat{CMP}=\widehat{CPA}\left(\text{hai góc tương ứng}\right)\)
\(\text{Ta có: }\)\(\widehat{MNA}+\widehat{NAM}=90^o\left(\Delta MNA\perp\text{ tại M}\right)\)
\(\widehat{NMC}+\widehat{CMP}=90^o\)
\(\Rightarrow\widehat{MNA}+\widehat{NAM}=\)\(\widehat{NMC}+\widehat{CMP}\)
\(\Rightarrow\widehat{MNA}=\widehat{NMC}\left(\widehat{CMP}=\widehat{NAM}\right)\)
\(Hay:\)\(\widehat{MNC}=\widehat{NMC}\)
\(\Rightarrow\Delta NMC\text{ cân}\)
\(\Rightarrow CN=CM\left(đpcm\right)\)
Ta có hình vẽ sau:
a) Vì AB = AC => ΔABC cân
=> \(\widehat{B_2}=\widehat{C_1}\)
Xét ΔABM và ΔACM có:
AB = AC (gt)
\(\widehat{B_2}=\widehat{C_1}\left(cmt\right)\)
BM = CM (gt)
=> ΔABM = ΔACM(c.g.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù)
=> \(\widehat{AMB}=\widehat{AMC}=\frac{180^o}{2}=90^o\)
=> AM \(\perp\) BC(đpcm)
b) Ta có: \(\widehat{B_2}=\widehat{C_1}\) và \(\widehat{B_1}+\widehat{B_2}=180^o;\widehat{C_1}+\widehat{C_2}=180^o\)
=> \(\widehat{B_1}=\widehat{C_2}\)
Xét ΔABD và ΔACE có:
AB = AC(gt)
\(\widehat{B_1}=\widehat{C_2}\left(cmt\right)\)
BD = CE (gt)
=> ΔABD = ΔACE(c.g.c)
=> \(\widehat{BAD}=\widehat{CAE}\) (2 góc tương ứng)
mà \(\widehat{BAM}=\widehat{CAM}\) (ΔABM = ΔACM)
=> \(\widehat{BAD}+\widehat{BAM}=\widehat{CAE}+\widehat{CAM}\)
=> AM là tia p/g của \(\widehat{DAE}\) (đpcm)
a/
Xét tg MAH và tg BAN có
AM=AB (gt); AN=AH (gt)
\(\widehat{MAH}=\widehat{BAN}\) (góc đối đỉnh)
=> tg MAH = tg BAN (c.g.c)
b/
Ta có tg MAH = tg BAN (cmt) mà \(\Rightarrow\widehat{BNA=}\widehat{MHA}=90^o\)
Xét tg vuông BAN có AB>BN (trong tg vuông cạnh huyền là cạnh có số đo lớn nhất)
Mà AB=AM
=> AM>BN (1)
Xét tg vuông MAH có \(\widehat{MAH}\) là góc nhọn => \(\widehat{MAN}\) là góc tù
Xét tg MAN có MN>AM (trong tg cạnh đối diện với góc tù là cạnh có số đo lớn nhất) (2)
Từ (1) và (2) => MN>BN
Ta có tg MAH = tg BAN (cmt) => \(\widehat{NBM}=\widehat{AMH}\) (3)
Xét tg BMN có
MN>BN (cmt) => \(\widehat{NBM}>\widehat{NMA}\) (trong tg góc đối diện với cạnh có số đo lớn hơn thì lớn hơn góc đối diện với cạnh có số đo nhỏ hơn) (4)
Từ (3) và (4) => \(\widehat{AMH}>\widehat{NMA}\)
c/
Ta có \(\widehat{BNA}=90^o\left(cmt\right)\Rightarrow BN\perp NP\) (1)
Xét tg MNP có \(MH\perp NP\left(gt\right)\) => MH là đường cao
=> MH là đường trung tuyến của tg MNP (trong tg cân đường cao hạ từ đỉnh đồng thời là đường trung tuyến) => HN=HP
Mà IB=IP (gt)
=> IH là đường trung bình của tg BNP => IH//BN (2)
Từ (1) và (2) => \(IH\perp NP\) mà \(MH\perp NP\)
=> M; H; I thảng hàng (từ 1 điểm trên đường thẳng chỉ dựng được duy nhất 1 đường thẳng vuông góc với đường thẳng đã cho)
Xét tg INP có
\(IH\perp NP\) => IH là đường cao của tg INP
HN=HP (cmt) => IH là đường trung tuyến của tg INP
=> tg INP là tg cân tại I (trong tg đường cao đồng thời là đường trung tuyến thì tg đó là tg cân) => IN=IP (cạn bên tg cân)
Mà IP=IB (gt) và IP+IB=BP
=> IN=1/2BP
a) Xét \(\Delta MAP\)và \(\Delta BAN\),ta có:
\(MA=BA\left(gt\right)\)
\(\widehat{MAP}=\widehat{BAN}\)(Vì đối đỉnh)
\(AP=AN\left(gt\right)\)
=> \(\Delta MAP=\Delta BAN\)\(\left(c.g.c\right)\)
b) Vì \(\Delta MAP=\Delta BAN\)=> \(MP=NB\)(2 cạnh tương ứng)
c) Từ điểm N gióng xuống MB một đường thẳng và cắt MB tại E, tạo với đoạn thẳng MB 1 góc = 90 độ.
Từ điểm P gióng xuống MB một đường thẳng và cắt MB tại F, tạo với đoạn thẳng MB 1 góc = 90 độ.
mk cảm ơn bạn