Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ta có ^MDB=^FCD ( đồng vị)
mà ^EBD= ^ FCD ( tam giác ABC đều)
=> ^MDB=^EBD
=> tứ giác EMDB là hình thang cân
CMTT: 2 tứ giác còn lại
b, chu vi của DEF = 15 hay DE+EF+FD=15 mà DE=BM, EF=AM, FD=MC( theo tính chất của hình thang cân )
=> AM+ MB + MC=15
a. ta có: \(\widehat{ADM}=\widehat{ABC}\)( đồng vị và MD // BC)
và \(\widehat{DAF}=\widehat{ABC}\) ( \(\Delta ABC\)đều)
suy ra \(\widehat{DAF}=\widehat{ADM}\)
hình thang \(ADMF\) ( MF // AD) có \(\widehat{DAF}=\widehat{ADM}\)nên là hình thang cân
Xét ΔMAB có MD/DA=ME/EB
nên DE//AB
=>DE/AB=MD/MA=1/3
Xét ΔMAC có MF/MC=MD/MA
nên FD//AC
=>FD/AC=MF/MC=1/3
Xét ΔMBC có ME/EB=MF/FC
nên EF//BC
=>EF/BC=MF/MC=1/3
=>DE/AB=FD/AC=EF/BC
=>ΔDEF đồng dạngvới ΔABC