Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Hai tam giác ACE và BAD có:
\(\hept{\begin{cases}AC=BA\\\widehat{ACE}=\widehat{BAD}=60^o\\CE=AD=2BC\end{cases}}\)
Nên \(\Delta ACE=\Delta BAD\)
Suy ra AE=BD
b) Tam giác ABC đều nên \(\widehat{ABC}=\widehat{BAC}=60^o\)
Suy ra \(\widehat{ABE}=180^o-\widehat{ABC}=180^o-60^o=120^o\)
Lại có BE=BC=BA nên tam giác ABE cân tại B. Do đó,
\(\widehat{EAB}=\frac{180^o-\widehat{ABE}}{2}=30^o\)
Do đó: \(\widehat{EAD}=\widehat{EAB}+\widehat{BAD}=30^o+60^o=90^o\)
Vậy tam giác EAD vuông tại A.
c) Tam giác ACE vuông tại A có:
\(\hept{\begin{cases}AC=3cm\\CE=2BC=6cm\end{cases}}\)
nên: \(AE=\sqrt{CE^2-AC^2}=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
Tam giác EAD vuông tại A có:
\(\hept{\begin{cases}AE=3\sqrt{3}\left(cm\right)\\AD=2BC=6\left(cm\right)\end{cases}}\)
Nên: \(DE=\sqrt{AE^2+AD^2}=\sqrt{27+36}=3\sqrt{7}\left(cm\right)\)
d) Tam giác BCD cân tại C có CM là đường phân giác nên CM cũng là đường cao của tam giác BCD. Do đó, \(CM\perp BD\)
Lại có: \(\Delta ACE=\Delta BAD\)nên\(\Delta ABD=\Delta CAE=90^o\)
Suy ra \(AB\perp BD\)
Vậy CM//AB (cùng vuông góc với BD).
e) Tam giác ABC đều nên \(\widehat{ACB}=60^o\Rightarrow\widehat{BCD}=120^o\)
Mà CM là phân giác của \(\widehat{BCD}\)nên \(\widehat{BCM}=60^o\)
Tam giác BMC vuông tại M có\(\widehat{BCM}=60^o\)
Nên: \(CM=\frac{BC}{2}=\frac{3}{2}=1,5\left(cm\right)\)
a: Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Dođó: ΔABD=ΔACE
Suy ra: AD=AE
hay ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{HAB}=\widehat{KAC}\)
Do đó: ΔAHB=ΔAKC
Suy ra: BH=CK và AH=AK
Xét ΔADE có
AH/AD=AK/AE
Do đó: HK//DE
hay HK//BC
c: Ta có: \(\widehat{OBC}=\widehat{HBD}\)
\(\widehat{OCB}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{KCE}\)
nên \(\widehat{OBC}=\widehat{OCB}\)
hay ΔOBC cân tại O
Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
=>AD=AE và \(\widehat{ADB}=\widehat{AEC}\)
Xét ΔHBD vuông tại H và ΔKCE vuông tại K có
BD=CE
\(\widehat{HDB}=\widehat{KEC}\)
Do đó; ΔHBD=ΔKCE
=>\(\widehat{HBD}=\widehat{KCE}\)
mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)
và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)
nên \(\widehat{OBC}=\widehat{OCB}\)
=>OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{BOA}=\widehat{COA}\)
=>OA là phân giác của góc BOC
a) Ta có: \(\widehat{ABD}+\widehat{ABC}=180^0\)(hai góc kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)
mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)
nên \(\widehat{ABD}=\widehat{ACE}\)
Xét ΔABD và ΔACE có
AB=AC(ΔABC cân tại A)
\(\widehat{ABD}=\widehat{ACE}\)(cmt)
BD=CE(gt)
Do đó: ΔABD=ΔACE(c-g-c)
b) Ta có: ΔABD=ΔACE(cmt)
nên AD=AE(hai cạnh tương ứng)
Xét ΔADE có AD=AE(cmt)
nên ΔADE cân tại A(Định nghĩa tam giác cân)
c) Xét ΔDHB vuông tại H và ΔEKC vuông tại K có
DB=CE(gt)
\(\widehat{HDB}=\widehat{KEC}\)(hai góc ở đáy của ΔADE cân tại A)
Do đó: ΔDHB=ΔEKC(cạnh huyền-góc nhọn)
d) Ta có: ΔDHB=ΔEKC(cmt)
nên \(\widehat{HBD}=\widehat{KCE}\)(hai góc tương ứng)
mà \(\widehat{HBD}=\widehat{OBC}\)(hai góc đối đỉnh)
và \(\widehat{KCE}=\widehat{OCB}\)(hai góc đối đỉnh)
nên \(\widehat{OBC}=\widehat{OCB}\)
Xét ΔOBC có \(\widehat{OBC}=\widehat{OCB}\)(cmt)
nên ΔOBC cân tại O(Định lí đảo của tam giác cân)
e) Xét ΔABO và ΔACO có
AB=AC(ΔABC cân tại A)
AO chung
BO=CO(ΔOBC cân tại O)
Do đó: ΔABO=ΔACO(c-c-c)
nên \(\widehat{BOA}=\widehat{COA}\)(hai góc tương ứng)
mà tia OA nằm giữa hai tia OB,OC
nên OA là tia phân giác của \(\widehat{BOC}\)(đpcm)
đó là hình
vẽ hình sai rồi bạn