K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
DH
13 tháng 2 2018
bn tự vẽ hình nha,mik lm đc câu a thôi
a,Xét \(\Delta\) ACE và \(\Delta\)BAC
có : \(AC=AB\)
\(\widehat{ACE}=\widehat{BAD}=60^o\)
\(CE=AD=2BC\)
\(\Rightarrow\)\(\Delta\)ACE = \(\Delta\)BAC(c - g - c)
\(\Rightarrow\)AE = BD (2 cạnh tương ứng)
GH
14 tháng 2 2018
Hướng dẫn
a) Xét tam giác CAE và tam giác ABD
b) chứng minh góc EAD = 90 độ
+ góc BAC = 60 độ
+ chỉ cần chứng minh góc EAB = 30 độ nữa là dc
c) Áp dụng Py-ta-go
20 tháng 7 2022
a: Xét ΔBCD và ΔABE có
BC=AB
góc BCD=góc ABE
CD=BE
Do đó: ΔBCD=ΔABE
Suy ra:BD=AE
b: Xét ΔACE có
AB là đường trung tuyến
AB=CE/2
Do đó: ΔACE vuông tại A
c: CE=2CB=6cm
\(AE=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
a) Hai tam giác ACE và BAD có:
\(\hept{\begin{cases}AC=BA\\\widehat{ACE}=\widehat{BAD}=60^o\\CE=AD=2BC\end{cases}}\)
Nên \(\Delta ACE=\Delta BAD\)
Suy ra AE=BD
b) Tam giác ABC đều nên \(\widehat{ABC}=\widehat{BAC}=60^o\)
Suy ra \(\widehat{ABE}=180^o-\widehat{ABC}=180^o-60^o=120^o\)
Lại có BE=BC=BA nên tam giác ABE cân tại B. Do đó,
\(\widehat{EAB}=\frac{180^o-\widehat{ABE}}{2}=30^o\)
Do đó: \(\widehat{EAD}=\widehat{EAB}+\widehat{BAD}=30^o+60^o=90^o\)
Vậy tam giác EAD vuông tại A.
c) Tam giác ACE vuông tại A có:
\(\hept{\begin{cases}AC=3cm\\CE=2BC=6cm\end{cases}}\)
nên: \(AE=\sqrt{CE^2-AC^2}=\sqrt{6^2-3^2}=3\sqrt{3}\left(cm\right)\)
Tam giác EAD vuông tại A có:
\(\hept{\begin{cases}AE=3\sqrt{3}\left(cm\right)\\AD=2BC=6\left(cm\right)\end{cases}}\)
Nên: \(DE=\sqrt{AE^2+AD^2}=\sqrt{27+36}=3\sqrt{7}\left(cm\right)\)
d) Tam giác BCD cân tại C có CM là đường phân giác nên CM cũng là đường cao của tam giác BCD. Do đó, \(CM\perp BD\)
Lại có: \(\Delta ACE=\Delta BAD\)nên\(\Delta ABD=\Delta CAE=90^o\)
Suy ra \(AB\perp BD\)
Vậy CM//AB (cùng vuông góc với BD).
e) Tam giác ABC đều nên \(\widehat{ACB}=60^o\Rightarrow\widehat{BCD}=120^o\)
Mà CM là phân giác của \(\widehat{BCD}\)nên \(\widehat{BCM}=60^o\)
Tam giác BMC vuông tại M có\(\widehat{BCM}=60^o\)
Nên: \(CM=\frac{BC}{2}=\frac{3}{2}=1,5\left(cm\right)\)
cảm ơn bạn nha