K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bài 1 :
a) Chứng minh HCN có 2 cạnh kề bằng nhau AB=AC
Ta có: ^BAC = ^ACD = ^CDB = 90* và AB = AC
=> Tứ giác ABCD là hình vuông
áp dụng pitago cho tg ACD vuông tại C, cạnh huyền AD có:
AD² = AC² + DC² = 2.CD² => AD = CD.√2
b/
tg BAM ~ tg KCM (g.g)
=> BM/KM = AM/CM
hay 6/KM = 3
--> KM = 2
----> tự suy ra các cạnh còn lại...
c/ kẻ BE vg MB tại B thì lúc đó, ta có:
^EBA = ^AMB (cùng cộng ^ABM = 90*)
^AMB = ^CMK" (cặp góc đối đỉnh)
---> ^EBA = ^CMK
mà: ^CMK = ^DBK (cặp góc đồng vị)
---> ^EBA = ^DBK
Xét 2 tg: EAB & KBD:
^KAB = ^KDB = 90*
AB = BD, cạnh hình vuông ABCD
^EBA = ^DBK (C.M.Trên)
---> 2 tg: EAB & KBD bằng nhau
---> BE = BK
Áp dụng hệ thức lượng trong tg vuông BEM có đường cao AB
---> 1/AB² = 1/BE² + 1/BM²
Mà BE = BK
--> 1/AB² = 1/BM² + 1/BK² (ĐPCM)