K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2016

Mình cx đang lm bài này

11 tháng 6 2017

k cho tớ

30 tháng 1 2017

Giải lâu đấy bạn

21 tháng 8 2020

ACB =180(độ)−BAC2180(độ)−BAC2(1)

Ta có BD=CE(gt);AB=AC(gt)

mà AB+BD=AD và AC+CE=AE

=> AD=AE

=>ΔADEΔADE cân tại A ( Có hai góc bằng nhau)

=>góc ADE= góc AED=(180 độ - DAE) :2 (2)

Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED

mà góc ABC và góc ADE ở vị trí đồng vị

=>BC // DE(đpcm)

b)ta có góc ABC= góc MBD (đối đỉnh )

góc ACB= góc NCE( đối đỉnh )

mà Góc ABC=Góc ACB => góc MBD= góc NCE

Xét hai tam giác vuông ΔBMDΔBMD và ΔCNEΔCNE

có BD=CE (gt)

góc MBD= góc NCE (c/m trên)

=>ΔBMD=ΔCNEΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)

=> DM=EN(Hai cạnh tương ứng)

c) Gọi giao điểm của AM và BI là E

giao điểm của AN và CI là F

Vì ΔBMD=ΔCNEΔBMD=ΔCNE( chứng minh trên ) =>BM=CN( Hai cạnh tương ứng)

Ta có : Góc ABC= Góc ACB ( gt)

mà Góc ABC + Góc ABM=180 độ ( kề bù)

và Góc ACB+góc ACN= 180 độ ( kề bù)

=>Góc ABM=góc ACN

Xét ΔABMΔABM VÀ ΔACNΔACN có:

AB=AC(gt)

Góc ABM=Góc ACN(cmt)

BM=CM ( cmt)

=> ΔABM=ΔACN(c−g−c)ΔABM=ΔACN(c−g−c)

=> Góc AMB=Góc ANC (hai góc tương ứng )

=> ΔAMNΔAMN Cân ở A ( có hai góc bằng nhau) (đpcm)

D,(hơi dài )

ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)

Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:

Góc EMB=góc FNC (cmt)

MB=CN(cmt)

=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)

=>EM=FN(hai cạnh tương ứng ) (4)

Ta có (3) (4) mà AE+EM=AM và AF+FN=AN

=> AE=AF

Xét hai tam giác vuông tam giác AEI và tam giác AFI có

AI cạnh chung

AE=AF(cmt)

=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)

=>Góc AIE=Góc AIF( góc tương ứng ) (10)

ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)

góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)

mà góc EBM= góc FCN (cmt)(7)

góc MDB=góc NCE(gt) (8)

từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)

từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)

https://h.vn/hoi-dap/question/168197.html

tham khảo nhé bạn