Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3.
Tam giác \(ABC\)vuông cân tại \(A\)nên \(\widehat{ACB}=45^o\).
Tam giác \(BCD\)vuông cân tại \(B\)nên \(\widehat{BCD}=45^o\).
\(\widehat{ACD}=\widehat{ACB}+\widehat{BCD}=45^o+45^o=90^o\)
\(\Rightarrow AC\perp CD\)
mà \(AC\perp AB\)
nên \(AB//CD\)
suy ra \(ABCD\)là hình thang vuông.
Câu 4.
Kẻ \(BE\perp CD\)khi đó \(\widehat{BED}=90^o\).
Tứ giác \(ABED\)có \(4\)góc vuông nên là hình chữ nhật, mà \(AB=AD\)nên \(ABED\)là hình vuông.
\(BE=DE=AB=2\left(cm\right)\)
\(EC=CD-DE=4-2=2\left(cm\right)\)
Suy ra tam giác \(BEC\)vuông cân tại \(E\)
Suy ra \(\widehat{EBC}=\widehat{ECB}=45^o\)
\(\widehat{ABC}=\widehat{ABE}+\widehat{EBC}=90^o+45^o=135^o\)
Bài mình làm cực chi tiết nên có một số chỗ viết tắt: gt:giả thiết, dhnb:dấu hiệu nhận biết, đ/n:định nghĩa, cmt:chứng minh trên, t/c: tính chất
3. a) Vì tam giác ABC vuông cân ở A (gt)=> góc ACB=45 độ.
tam giác ACE vuông cân ở E (gt)=> góc EAC=45 độ.
mà góc EAC và góc ACB ở vị trí so le trong.
Từ 3 điều trên=> AE//BC (dhnb) => AECB là hình thang (đ/n) mà góc AEC=90 độ (tam giác ACE vuông cân) => AECB là hình thang vuông.
b) Vì AECB là hình thàng vuông(cmt) mà góc AEC= 90 độ (tam giác ACE vuông cân). => góc ACE=90 độ.
Có: góc ABC= 45 độ (cmt).
tam giác AEC vuông cân ở E (gt)=> góc EAC=45 độ (t/c) mà góc BAC+ góc EAC= góc BAE và góc BAC= 90 độ (tam giác BAC vuông cân)=> góc BAE= 90 độ=45 độ= 135 độ.
Gọi AD là đường trung trực tam giác ABC=> AD=BD=BC=1/2BC=1/2*2=1 cm (chỗ này là tính chất tam giác vuông: trung tuyến ứng với cạnh huyền thì bằng nửa cạnh huyền nhé). [đây là điều thứ nhất suy ra được]
=> AD vông góc với BC. [đây là điều thứu hai suy ra được]
Xét tam giác ADC vuông tại D (AD vuông góc BC) và tam giác AEC vuông tại E (gt) có: Cạnh huyền AC chung. Góc EAC= góc BCA (cmt) => tam giác ADC= tam giác CEA (ch-gn) => AD= EC ( 2 cạnh tương ứng) mà AD=1cm(cmt) => AE=1cm.
Xét tam giác ADB vuông (AD vuông góc BC) có: AD2+ BD2 = AB2 ( định lí Pytago)
12 + 12 =AB2 => 1+1=AB2 => Ab bằng căn bậc hai cm.
Vì ΔABC vuông cân tại A nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 1 = 45 0
Vì ∆ BCD vuông cân tại B nên
Lại có: ( tính chất tam giác vuông).
Suy ra: ∠ C 2 = 45 0
∠ (ACD) = ∠ C 1 + ∠ C 2 = 45 0 + 45 0 = 90 0
⇒ AC ⊥ CD
Mà AC ⊥ AB (gt)
Suy ra: AB //CD
Vậy tứ giác ABCD là hình thang vuông.
Vì tam giác ABC vuông cân tại A (gt) nên góc ABC = góc ACB = 90 : 2 = 45 độ
Vì tam giác BCD vuông cân tại B (gt) nên góc BDC = góc BCD = 90 : 2 = 45 độ
Ta có: góc ACB + góc BCD = góc ACD = 45 độ + 45 độ = 90 độ
hay AC vuông góc DC. (1)
Vì tam giác ABC vuông cân tại A (gt) nên AC vuông góc AB (2)
Từ (1) và (2) suy ra DC // AB
Do đó tứ giác ABCD là hình thang.
Vì ∆ ABC vuông cân tại A nên \(\widehat{C_1}=45^o\)
Vì ∆ BCD vuông cân tại B nên \(\widehat{C_2}=45^o\)
\(\Rightarrow\widehat{ACD}=\widehat{C_1}+\widehat{C_2}=45^o+45^o=90^o\)
\(\Rightarrow\) AC ⊥ CD, AC ⊥ AB (gt)
Suy ra: AB // CD. Vậy tứ giác ABDC là hình thang vuông.
a) Tứ giác BECD là hình thang do AB=AC (t/c 2 cạnh bên bằng nhau hình thang cân)
b)
c) Do A= 70 độ
Mà 2 góc đáy bằng nhau (t/c hình thang cân)
=> 180 độ - 70 độ = 110 độ
=> Góc B = góc C = 1/2 110 độ
=> Góc B = góc C = 55 độ (đpcm)
Bài 1:
a.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = 1800 - D = 1800 - 540 = 1260
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 - C = 1800 - 1050 = 750
b.
AB // CD
=> A + D = 1800 (2 góc trong cùng phía)
=> A = (1800 - 320) : 2 = 740
=> D = 1800 - 740 = 1060
AB // CD
=> B + C = 1800 (2 góc trong cùng phía)
=> B = 1800 : (1 + 2) . 2 = 1200
=> C = 1800 - 1200 = 600
Chúc bạn học tốt ^^