K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD và ΔBED có 

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

Suy ra: AD=ED

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

c: Ta có: ΔADF=ΔEDC

nên DF=DC và AF=EC

Ta có: BA+AF=BF

BE+EC=BC

mà BA=BE

và AF=EC

nên BC=BF

hay B nằm trên đường trung trực của CF(1)

Ta có: DF=DC

nên D nằm trên đường trung trực của CF(2)

Từ (1) và (2) suy ra BD\(\perp\)CF

15 tháng 4 2021

Lười đánh máy thật sự:vvv

a) Xét ∆ABD và ∆AED:

AD: cạnh chung

AB=AE(gt)

\(\widehat{BAD}=\widehat{CAD}\) (AD là phân giác góc BAC)

=> ∆ABD=∆AED (c.g.c)

=> BD=DC

b) Theo câu a: ∆ABD=∆AED

=> \(\widehat{ABD}=\widehat{AED}\)

Ta có: \(\left\{{}\begin{matrix}\widehat{ABD}+\widehat{DBK}=180^o\\\widehat{AED}+\widehat{DEC}=180^o\end{matrix}\right.\)

\(\Rightarrow\widehat{DBK}=\widehat{DEC}\)

Xét ∆DBK và ∆DEC:

BD=ED(cm ở a)

\(\widehat{DBK}=\widehat{DEC}\left(cmt\right)\)

\(\widehat{BDK}=\widehat{EDC}\) ( 2 góc đối đỉnh)

=> ∆DBK=∆DEC (g.c.g)

c) Gọi giao điểm của AD và BE là I

Xét ∆BAI và ∆EAI:

AB=AE(gt)

\(\widehat{BAI}=\widehat{EAI}\left(gt\right)\)

AI: cạnh chung

=> ∆BAI=∆EAI (c.g.c)

=> \(\left\{{}\begin{matrix}BI=EI\left(1\right)\\\widehat{AIB}=\widehat{AIE}\end{matrix}\right.\)

Mà \(\widehat{AIB}+\widehat{AIE}=180^o\) (2 góc kề bù)

=> \(\widehat{AIB}=\widehat{AIE}=90^o\left(2\right)\)

Từ (1) và (2) suy ra AD là trung trực của BE.

a) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAE}\))

AE chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

30 tháng 6 2023

loading...

a Xét tam giác ABD và tam giác AED có:

\(\widehat{A_1}=\widehat{A_2}\)

AB = AE

BD chung

=> ΔABD = ΔAED (c.g.c)

=> BD = DE

b Xét △DBK và △DEC có:

DB = DE (cmt)

KD chung

\(\widehat{D_1}=\widehat{D_2}\)

=> △DBK=△DEC (c.g.c)

Không copy ctrl từ chuyên gia hoidap247 nhé.

a: Xét ΔADB và ΔADE có 

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔADB=ΔADE

Suy ra: BD=ED

b: Ta có: ΔADB=ΔADE

nên \(\widehat{ABD}=\widehat{AED}\)

hay \(\widehat{DBK}=\widehat{DEC}\)

Xét ΔDBK và ΔDEC có 

\(\widehat{DBK}=\widehat{DEC}\)

DB=DE

\(\widehat{BDK}=\widehat{EDC}\)

Do đó: ΔDBK=ΔDEC

c: Ta có: AB+BK=AK

AE+EC=AC

mà AB=AE

và BK=EC

nên AK=AC

Xét ΔAKC có AK=AC

nên ΔAKC cân tại A

d: Ta có: ΔDBK=ΔDEC

nên DK=DC

Ta có: AK=AC

nên A nằm trên đường trung trực của CK(1)

Ta có: DK=DC

nên D nằm trên đường trung trực của CK(2)

Từ (1) và (2) suy ra AD là đường trung trực của CK

hay AD\(\perp\)CK

21 tháng 12 2021

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

26 tháng 4 2021

mình chỉ cần hình thui ạ

 

1) Xét ΔABD và ΔAED có 

AB=AE(gt)

\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAD}\))

AD chung

Do đó: ΔABD=ΔAED(c-g-c)

Suy ra: BD=ED(hai cạnh tương ứng)

2) Ta có: ΔABD=ΔAED(cmt)

nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)

Ta có: \(\widehat{ABD}+\widehat{KBD}=180^0\)(hai góc kề bù)

\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)

mà \(\widehat{ABD}=\widehat{AED}\)(cmt)

nên \(\widehat{KBD}=\widehat{CED}\)

Xét ΔDBK và ΔDEC có 

\(\widehat{KBD}=\widehat{CED}\)(cmt)

BD=ED(cmt)

\(\widehat{BDK}=\widehat{EDC}\)(hai góc đối đỉnh)

Do đó: ΔDBK=ΔDEC(g-c-g)

3) Ta có: ΔDBK=ΔDEC(cmt)

nên BK=EC(hai cạnh tương ứng)

Ta có: AB+BK=AK(B nằm giữa A và K)

AE+EC=AC(E nằm giữa A và C)

mà AB=AE(gt)

và BK=EC(cmt)

nên AK=AC

Xét ΔAKC có AK=AC(cmt)

nên ΔAKC cân tại A(Định nghĩa tam giác cân)