Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AEMD có
MD//AE
ME//AD
Do đó: AEMD là hình bình hành
Suy ra: Hai đường chéo AM và ED cắt nhau tại trung điểm của mỗi đường
hay A và M đối xứng nhau qua I
Vì ME//AC và MF//AB nên AEMF là hbh
Mà I là trung điểm AM nên I là trung điểm EF
Do đó E đx F qua I
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
a: Xét tứ giác BMNP có
BM//NP
NM//BP
Do đó: BMNP là hình bình hành
Xét ΔABC có
N là trung điểm của CA
NP//AB
Do đó: P là trung điểm của BC
b: Sửa đề; HB//AP
Xét ΔABC có
N là trung điểm của AC
NM//BC
Do đó: M là trung điểm của AB
Xét tứ giác AHBP có
M là trung điểm chung của AB và HP
=>AHBP là hình bình hành
Tứ giác BEMF là hình bình hành ( hai cặp cạnh đối song song) |
Kẻ AH vuông góc BC tại H , AH cắt MF tại G. Ta có diện tích ABC=1/2AH*BC và S bemf=fm*gh nên Sbemf/Sabc=2*HG/AH*FM/BC |
Gọi AM = x; MC = y thìAC = x + y Xét tam giácABC có MF // BC (gt)FM/BC=AM/AC ( hệ quả định lí Talet) Thì FM/BC=x/x+y |
Xét tam giácAHC có GM //HCthì HG/AH=CM/AC ( định lí Talet) HG/AH=x/x+y |
Do đó Sbefm/Sabc=2*xy/(x+y)^2 Ta có : (x-y)^2>=0thif(x+y)^2>=4xy thì xy/(x+y)^2<=1/4 |
Sbemf/Sabc<=2*1/4hay Sbemf<=1/2Sabc |
Mà Sabc không đổi nên Sbemf đạt giá trị lớn nhất là 1/2Sabc khi và chỉ khi x=y Hay M là trung điểm của AC. Gõ mỏi tay ko biết đc j ko-_- |
a/
FB=FC (gt); FD=FG (gt) => BDCG là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hbh)
b/
Ax//BC => AH//FB
Fy//AB => FH//AB
=> ABFH là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)
=> AH=FB (cạnh đối hbh); Mà FB=FC => AH=FC
Ta có Ax//BC => AH//FC
=> AFCH là hbh (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
=> AF//HC (cạnh đối hbh)
c/
DA=DB (gt)
FB=FC (gt)
=> J là trọng tâm của tg ABC \(\Rightarrow AJ=\dfrac{2}{3}AF\)
\(HK=\dfrac{1}{3}HC\Rightarrow CK=\dfrac{2}{3}HC\)
Ta có AFCH là hbh (cmt) =>AF=HC
=> AJ=CK (Tứ giác có 1 cặp cạnh đối // và = nhau là hbh)
Ta có
AF//HC (cmt) => AJ//CK
=>AKCJ là hbh
Nối J với K cắt AC tại I'
=> I'A=I'C (trông hbh hai đường chéo cắt nhau tại trung điểm mỗi đường) => I' là trung điểm AC
Mà I cũng là trung điểm AC
\(\Rightarrow I'\equiv I\) => J; I; K thẳng hàng
Ta có:IE//BM
Áp dụng hệ quả định lý Ta-lét ta có:\(\dfrac{EI}{BM}=\dfrac{AI}{AM}\)(1)
Ta có:IF//MC
Áp dụng hệ quả định lý Ta-lét ta có:\(\dfrac{FI}{CM}=\dfrac{AI}{AM}\)(2)
Từ (1) và (2) \(\Rightarrow\dfrac{EI}{BM}=\dfrac{IF}{MC}\)
Mà BM=MC(gt) \(\Rightarrow EI=IF\)
giải giúp mình với mình cần gấp ạ