Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
a) xét tam giác AED và tam giác MDE có:
^ADE = ^DEM ( do AD // EM )
ED chung
^EDM = ^AED ( do AE // DM )
=> Tam giác AED = tam giác MDE ( g.c.g )
=> AD = ME
b) Gọi O là giao điểm của ED và AM
Nối AM
Xét tam giác AEM và tam giác MDA có:
^EAM = ^AMD ( so le trong vì EA // DM )
AM chung
^EMA = ^DAM ( so le trong vì EM // AD )
=> Tam giác AEM = tam giác MDA ( g.c.g )
=> AE = DM ( hai cạnh tương ứng )
Xét tam giác AEO và tam giác MDO có:
^AED = ^EDM ( so le trong vì AE // DM )
AE = DM ( chúng minh trên )
^EAM = ^AMD ( so le trong vì AE // DM )
=> Tam giác AEO = tam giác MDO ( g.c.g )
=> EO = OD
=> O là trung điểm ED. (1)
Mà OA = OM ( do tam giác AOE = tam giác DOM )
=> O là trung điểm của AM. (2)
Từ (1), (2) => O là trung điểm của ED và AM và là giao điểm của OE và AM
Mà I là trung điểm ED ( giả thiết )
=> Điểm O và I trùng nhau.
=> I là trung điểm của ED và AM, là giao điểm của AM và ED
=> 3 điểm A, I, M thẳng hàng
Bạn có thể tự vẽ hình chứ ? Tại mình lười quá nên không muốn vẽ hình =)))
a, xét tam giác ADE và tam giác MED có : ED chung
góc ADE = góc DEM (slt)
góc AED = góc EDM (slt)
=> tam giác ADE = tam giác MED (g-c-g)
=> AD = ME (đn)
1. Vì ME // AC nên góc BME = góc BCA ;
DM // AB => góc DMC = góc ABC ; BM = MC
=> Tam giác EBM = tam giác DMC (g.c.g)
2. Vì tam giác EBM = tam giác DMC nên MD = BE
Mà DAEM là hình bình hành vì có các cạnh đối song song với nhau
=> DM = AE => BE = AE => E là trung điểm của AB
Tương tự ta cũng có D là trung điểm của AC
Ta có :
Tam giác EBM = tam giác DMC ( Định nghĩa tam giac )
Vì tổng tam giac = 180o
=> Tam giac EBM = tam giac DMC
Ta co vì BA // MD và EM // AC
Nếu như E là trung điểm AB va D là trung điểm AC
thì ta tao dược hình thoi mỗi cạnh bằng nhau
=>E là trung điểm AB và D là trung điểm AC
Khong biết đúng hay khong nhung bà coi lại dùm tui.
Nhưng sau khi giải bìa xong tui mới thấy bà rảnh quá trời.
a) Do AD // BC (gt) => góc DAC = góc ACB (so le trong)
AB // CD (gt) => góc BAC = góc ACD (so le trong)
Xét t/giác ABC và t/giác CDA
có góc ACB = góc DAC (cmt)
AC : chung
góc BAC = góc ACD (cmt)
=> t/giác ABC = t/giác CDA (g.c.g)
b) Ta có : t/giác ABC = t/giác CDA (cmt)
=> AB = CD (hai cạnh tương ứng)
Do AB // CD (gt) => góc ABD = góc BDC (so le trong)
Xét t/giác AMB và t/giác CMD
có góc BAM = góc MCD (cmt)
AB = CD (cmt)
góc ABM = góc BDM (cmt)
=> t/giác AMB = t/giác CMD (g.c.g)
=> AM = MC (hai cạnh tương ứng)
=> M là trung điểm của AC
c) Xét t/giác AMI và t/giác CMK
có góc DAC = góc ACK (cmt)
AM = CM (cmt)
góc IMA = góc CMK (đối đỉnh)
=> t/giác AMI = t/giác CMK (g.c.g)
=> MI = MK (hai cạnh tương ứng)
=> M là trung điểm của IK
Kuroba Kaito, mình đã biết I, M, K có thẳng hàng đâu. mới chứng minh được MI=Mk nên chưa thể nói M là trung điểm của IK được
a: Xét tứ giác ABCD có
AD//BC
AB//CD
Do đó: ABCD là hình bình hành
Suy ra: BC=AD
a: Xét tứ giác AEMD có
AD//ME
AE//MD
Do đó; AEMD là hình bình hành
Suy ra:AD=ME
b: Ta có: AEMD là hình bình hành
nên hai đường chéo AM và ED cắt nhau tại trung điểm của mỗi đường
=>A,M,I thẳng hàng