Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABH\)vuông ,ta có:
\(\tan B=\frac{AH}{BH}\Rightarrow AH=BH.\tan B=12.\tan60^o\approx16,517cm\)
\(\cos B=\frac{BH}{AB}\Rightarrow AB=\frac{BH}{\cos B}=\frac{12}{\cos12^o}\approx12,216cm\)
\(\tan C=\frac{AH}{HC}=\frac{16,517}{18}\approx0,918\Rightarrow C\approx26^o\)
\(\cos C=\frac{HC}{AC}\Rightarrow AC=\frac{HC}{\cos C}=\frac{18}{\cos26^o}\approx19,613cm\)
Vậy \(AH\approx16,517cm\)
\(AB=12,216cm\)
\(AC=19,613cm\)
a:Xét ΔAHB vuông tại H có
cosB=BH/AB
=>12/AB=cos60=1/2
=>AB=24(cm)
BC=BH+CH=30(cm)
Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(24^2+30^2-AC^2=24\cdot30=720\)
=>\(AC=6\sqrt{21}\left(cm\right)\)
b: ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>AH=12*căn 3(cm)
Giải:
Kẻ đường cao từ đỉnh A của tam giác ABC cắt BC tại H.Trong tam giác ABC có :góc B=700, góc C=500 nên góc A=600.
Xét tam giác vuông ABH,ta có:góc BAH=200.Tương tự,ta cũng có góc CAH=400
Áp dụng HTCVGTTGV ABH,ta có :
BH=AB.sin góc BAH=25.sin 200=8,55 (cm)
AH=BH.tan góc B=8,55.tan 700 =23,49 (cm)
Tương tự,xét tam giác vuông AHC,ta có:
HC=AH.tan góc HAC=23,49.tan 400 =19,71 (cm)
Theo đề bài,ta có:BH=12cm;CH=18cm nên BC=30cm.
Áp dụng HTCVGTGV ABH,ta có: AH=tan góc B.BH=tan 600 .12 =12√3 (cm)
Vì tam giác ABH là tam giác vuông nên góc A1 =300
Xét tam giác vuông AHC,ta có:
AH2 +HC2 =AC2
(12√3)2 +182 =AC2
=>AC=6√21 (cm)
Áp dụng HTCVGTGV ABC,ta có: AH=tan góc C.CH
12√3=tan góc C.18
=> góc C=490 =>góc A2 =410 =>gócA= 710
Tương tự, Áp dụng HTCVGTGV ABH,ta có: AB=24cm
Vậy AB= 24cm, AC=6√21cm,BC=30cm,AH=12√3cm,góc A=710,góc C=490
Ròy đóa Tuyền
tui làm xong rồi!!! đăng lên hỏi thử coi đáp án đúng ko thôi
sorry , tính các cạnh các góc và đường cao của tam giác ABC
a) tam giác AHB vuông tại H có đường cao HE nên áp dụng hệ thức lượng
\(\Rightarrow AE.AB=AH^2\)
tam giác AHC vuông tại H có đường cao HF nên áp dụng hệ thức lượng
\(\Rightarrow AF.AC=AH^2=AE.AB\)
b) \(AE.AB=AF.AC\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét \(\Delta AEF\) và \(\Delta ABC:\) Ta có: \(\left\{{}\begin{matrix}\dfrac{AE}{AC}=\dfrac{AF}{AB}\\\angle BACchung\end{matrix}\right.\)
\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c-g-c\right)\)
c) Ta có: \(AH^4=AH^2.AH^2=AE.AB.AF.AC\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB.AC=AH.BC\)
\(\Rightarrow AH^4=AE.AF.BC.AH\Rightarrow AH^3=AE.AF.BC\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHB vuông tại H có HE là đường cao ứng với cạnh huyền AB, ta được:
\(AE\cdot AB=AH^2\)(1)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔAHC vuông tại H có HF là đường cao ứng với cạnh huyền AC, ta được:
\(AF\cdot AC=AH^2\)(2)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
b) Ta có: \(AE\cdot AB=AF\cdot AC\)
nên \(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)
Xét ΔAFE vuông tại A và ΔABC vuông tại A có
\(\dfrac{AE}{AC}=\dfrac{AF}{AB}\)(cmt)
Do đó: ΔAFE\(\sim\)ΔABC(c-g-c)
a) Ta có: \(BC=13cm\Rightarrow BC^2=13^2cm=169cm\)
Xét: \(AB^2+AC^2=5^2+12^2=25+144=169=13^2=BC^2\)
Vậy tam giác ABC vuông tại A có cạnh huyền BC
b) Áp dụng định lý thích hai cạnh góc vuông tà tích giữa cạnh huyền và đường cao ta có:
\(AH\cdot BC=AB\cdot AC\)
\(\Rightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot5}{13}\approx4,6\left(cm\right)\)
c) Xét ΔAHB vuông tại H có đường cao HE ta có:
\(\Rightarrow AH^2=AE\cdot AB\) (1)
Xét ΔAHC vuông tại H có đường cao HF ta có:
\(\Rightarrow AH^2=AF\cdot AC\) (2)
Từ (1) và (2)
\(\Rightarrow AB\cdot AE=AC\cdot AF\)
\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AC}{AE}\) (3)
Dựa vào (3)
Ta suy ra: \(\Delta AEF\sim\Delta ABC\)
\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) (đpcm)
a: Xét ΔÂBC có BC^2=AB^2+AC^2
nên ΔABC vuông tại A
b: AH=AB*AC/BC=60/13(cm)
c: ΔAHB vuông tại H có HE là đường cao
nên AE*AB=AH^2
ΔAHC vuông tại H có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
=>AE/AC=AF/AB
=>ΔAEF đồng dạng với ΔACB
=>góc AFE=góc ABC