K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 6 2017

A B C H E D 3 4

a)

Xét \(\Delta ABC\) và \(\Delta HBA\)có:

\(\widehat{BAC}=\widehat{AHB}\left(=90^ô\right)\)

\(\widehat{ABC}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta HBA\)(g.g)

b)

\(\Delta ABC\)vuông tại A

\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(\Delta ABC\)đồng dạng với \(\Delta HBA\)

\(\Rightarrow\frac{AC}{AH}=\frac{BC}{AB}\Leftrightarrow AH=\frac{AB.AC}{BC}=\frac{3.4}{5}=2,4\left(cm\right)\)

c) Ta có

\(\hept{\begin{cases}\text{AH//DE}\\\widehat{AHC}=90^o\end{cases}\Rightarrow\widehat{CDE}=90^o}\)

Xét \(\Delta ABC\)và \(\Delta DEC\)

\(\widehat{BAC}=\widehat{CDE}=90^o\)

\(\widehat{ACB}\)là góc chung (giả thiết)

Suy ra \(\Delta ABC\)đồng dạng với \(\Delta DEC\)(g.g)

\(\Rightarrow\frac{CA}{CB}=\frac{CD}{CE}\Leftrightarrow CE.CA=CD.CB\left(đpcm\right)\)

d)

\(\Delta AHB\)vuông tại H

\(\Rightarrow BH=\sqrt{AB^2-AH^2}=\sqrt{3^2-2,4^2}=1,8\left(cm\right)\)

Ta có;   \(CD=BC-BH-DH=5-1,8-2,4=0,8\left(cm\right)\)

Ta lại có: 

\(\frac{CA}{CB}=\frac{CD}{CE}\)(theo câu c)

\(\Rightarrow EC=\frac{CB.CD}{CA}=\frac{5.0,8}{4}=1\left(cm\right)\)

Ta lại có:

\(AE=AC-EC=4-1=3\left(cm\right)\)

mà \(AB=3cm\)nên \(AB=AE\)hay \(\Delta ABE\)cân tại A

Vậy \(\Delta ABE\)cân tại A

24 tháng 6 2017

Hình vẽ ko được chính xác bạn thông cảm

22 tháng 3 2023

Có hình vẽ ko ạ

4 tháng 4 2022

a.Xét tam giác HBA và tam giác ABC, có:

^AHB = ^CAB = 90 độ

^B: chung

Vậy tam giác HBA đồng dạng tam giác ABC ( g.g )

b.

Áp dụng định lý pitago, ta có:

\(BC=\sqrt{8^2+10^2}=2\sqrt{41}cm\)

Ta có: tam giác HBA đồng dạng tam giác ABC

\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{BC}\)

\(\Leftrightarrow\dfrac{AH}{10}=\dfrac{8}{2\sqrt{41}}\)

\(\Leftrightarrow AH=\dfrac{8.10}{2\sqrt{41}}=\dfrac{40\sqrt{41}}{41}cm\)

Ta có: tam giác HBA đồng dạng tam giác ABC

\(\Rightarrow\dfrac{HB}{AB}=\dfrac{AB}{BC}\)

\(\Leftrightarrow AB^2=HB.BC\)

\(\Leftrightarrow8^2=2\sqrt{41}HB\)

\(\Leftrightarrow HB=\dfrac{32\sqrt{41}}{41}cm\)

20 tháng 3 2022

a, Xét tam giác HBA và tam giác ABC có 

^B _ chung ; ^BHA = ^BAC = 900

Vậy tam giác HBA ~ tam giác ABC (g.g) 

b, Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

\(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{10}=\dfrac{24}{5}cm\)

\(\dfrac{BH}{AB}=\dfrac{AB}{BC}\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Ta có: ΔHBA\(\sim\)ΔABC(cmt)

nên \(\dfrac{BH}{BA}=\dfrac{BA}{BC}=\dfrac{AH}{CA}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(\dfrac{BH}{3}=\dfrac{3}{5}=\dfrac{AH}{4}\)

Suy ra: BH=1,8cm; AH=2,4cm

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

8 tháng 6 2021

a)Ta có:`AB^2+AC^2=21^2+28^2=1225`

Mà `BC^2=1225`

Áp udnjg định lý ppytago đảo vào tam giác ABC có:`AB^2+AC^2=BC^2=1225`

`=>` tam giác ABC vuông

b)Vì BAC vuông tại A

`=>hat{BAC}=90^o`

`=>hat{HAB}=hat{HCA}=90^o-hat{HAC}`

Xét  tam giác HBA và tam giác HAC có"

`hat{HAB}=hat{HCA}`(CMT)

`hat{BHA}=hat{HAC}=90^o`

`=>`  tam giác HBA đồng dạng với tam giác HAC(gg)

8 tháng 6 2021

c)Xét tam giác ACH và tam giác BAC ta có:

`hat{AHC}=hat{BAC}=90^o`

`hat{ACB}` chung

`=>DeltaACH~DeltaBAC(gg)`

`=>(AC)/(BH)=(BC)/(AC)`

`=>AC^2=BH.BC`.

d)Đường phân góc gì nhỉ?

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

a: BC=căn 6^2+8^2=10cm

b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

c: HB=AB^2/BC=6^2/10=3,6cm

HC=10-3,6=6,4cm