Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: HB+HC=BC
\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)
\(\Leftrightarrow HC=72\left(cm\right)\)
hay HB=50(cm)
a, HB = 1,8cm; CH = 3,2cm; AH = 2,4cm; AC = 4cm
b, AB = 65cm; AC = 156cm; BC = 169cm; BH = 25cm
c, AB = 5cm; BC = 13cm; BH = 25/13cm; CH = 144/13cm
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
\(S_{ABC}=\dfrac{AH\cdot BC}{2}=150\left(cm^2\right)\)
\(S_{BAC}=\dfrac{AH\cdot BC}{2}=\dfrac{12\cdot25}{2}=150\left(cm^2\right)\)
a, Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=4\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=1,8\left(cm\right)\\CH=\dfrac{AC^2}{BC}=3,2\left(cm\right)\\AH=\sqrt{BH\cdot CH}=\sqrt{5,76}=2,4\left(cm\right)\end{matrix}\right.\)
Áp dụng hệ thức lượng trong tamm giác vuông ta có :
\(CH^2=AH.BH\)
\(\Rightarrow CH=\sqrt{3.7}=\sqrt{21}\) (Cm )
Áp dụng định lí Py -ta -go vào tam giác ACH có :
BC =\(BC=\sqrt{CH^2+BH^2}\)
=\(\sqrt{\left(\sqrt{21}\right)^2}+7^2=\sqrt{70}\)
Diện tịch tam giác ABC là :
\(S_{ABC}=\frac{1}{2}.CH.AB\)
=\(\frac{1}{2}.\sqrt{21}.10=5\sqrt{21}\)