Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c,
S BEMF = 6X10= 60
ht
Gt:
TG ABC có góc B=90độ
MA=MC; MF_I_AB; ME_I_BC; MN_I_AB; FN=NM; AB=3cm;AC=5cm
KL:(a) TG BEMF là hình chữ nhật
(b) TG BMAN là hình thoi
(c) Sbemf=?
Giải:
(a) Hứơng c/m " là tứ giác có 3 góc vuông"=> chỉ cần c/m 3 là đủ
(1)Góc B vuông theo (gt)
(2)góc MEB (có mũ trên ghét làm hình) là vậy vuông (gt)
(3)góc MFB vuông theo (gT)
=> dpcm
(b) Hướng chứng minh " tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường và vuông góc với nhau là hình thoi"
(1) Theo cách dựng hình MN & AB chính là hai đường chéo
(2) MN_I_AB theo (gt)
(3) MF=FN (gt) giải thích thêm N đối xứng của M qua F tất nhiên F phải là trung điểm
(4)FA=FB vì MF vuong góc với AB (gt) => MF// BC mà MA=MC (gt)=> theo tính chất Tam giác (ABC) MF chính là đường trung bình => FA=FB (*)
Vậy MN cắt AB tại trung điểm F đồng thời vuông góc với nhau => dpcm
(c) diện tích hình chữ nhật BEMF (hôm trước là tam giác mà)
(*)
BF=AB/2=3/2
BE=BC/2=4/2=2 {BC=4 theo hệ thức trong tam giác vuông 3^2+4^2=5^2)
=>S=3/2*2=3(cm^2)
a) MF _I_AB=> MF//BC; ME_I_BC=> ME//AB=> Tứ giác BEMF có các cặp cạnh song song Lại có góc B, E,F vuông theo cách dựng => góc M cũng vuông=> dpcm
b)
(vì MF _I_AB=> N thuộc MF
AB_I_MF=> AB_I_ MN
AB, MN là hai đường chéo tứ GiÁC BMAN
F là trung điểm MN do N đối xứng của M qua F
F trung điểm của AB do MF// BC và M là trung điểm của BC theo giải thiết
Tứ giác có hai dduongf chéo vuông góc và cắt nhau tại trung điểm mõi dduongf là hình thoi=> dpcm
c)
AB=3=> BF=1,5
AC=5=> BE=2,5
SBEMF=1,5.2.5=37,5 (cm^2)
b ơi b có kiến thức cơ bản không để mình chỉ hướng dẫn b làm th chứ làm hết dài lắm
a: Xét tứ giác AEMF có
\(\widehat{AEM}=\widehat{AFM}=\widehat{FAE}=90^0\)
Do đó: AEMF là hình chữ nhật
a: Xét tứ giác ADME có
góc ADM=góc AEM=góc DAE=90 độ
nên ADME là hình chữ nhật
b: Xét tứ giác AMBP có
D là trung điểm chung của AB và MP
MA=MB
Do đó: AMBP là hình thoi
=>ABlà phân giác của góc MAP(1)
c: Xét tứ giác AMCQ có
E là trung điểm chung của AC và MQ
MA=MC
Do đó: AMCQ là hình thoi
=>AC là phân giác của góc MAQ(2)
Từ (1), (2) suy ra góc PAQ=2*90=180 độ
=>P,A,Q thẳng hàng
mà AP=AQ
nên A là trung điểm của PQ
nhầm, 2.1,5 = 3, diện tích = 3 nhé :v
a, xét tứ giác BEMF có : góc CEF = góc MEB = góc MFB = 90
=> BEMF là hình chữ nhật (dh)
b, MF _|_ BA
BC _|_ AB
=> MF // BC
M là trung điểm của AC (gt)
=> MF là đường trung bình của tam giác ABC (đl)
=> F là trung điểm của AB
F Là trung điểm của MN
=> BMAN là hình bình hành (dh)
MN _|_ AB
=> BMAN là hình thoi (dh)
c, MF là đtb của tam giác ABC (câu a)
=> MF = BC/2 ; BC = 4 (Gt)
=> MF = 2
tương tự tính ra BF = 1,5
=> S BEMF = 4.1,5 = 6