Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại B và ΔAID vuông tại I có
AD chung
\(\widehat{BAD}=\widehat{IAD}\)
Do đó: ΔABD=ΔAID
Suy ra: AB=AI
hay ΔABI cân tại A
b: Xét ΔBDM vuông tại B và ΔIDC vuông tại I có
DB=DI
\(\widehat{BDM}=\widehat{IDC}\)
Do đó: ΔBDM=ΔIDC
Suy ra: DM=DC
c: Ta có: ΔBDM=ΔIDC
nên BM=IC
Ta có: AB+BM=AM
AI+IC=AC
mà AB=AI
và BM=IC
nên AM=AC
hay ΔAMC cân tại A
mà \(\widehat{MAC}=60^0\)
nên ΔAMC đều
Chứng minh:
a) - Xét ΔABD và ΔAID có
Góc ABD = Góc AID (=90 độ)
AD chung
Góc BAD = Góc IAD ( AD là phân giác của góc A)
→ ΔABD = ΔAID (Cạnh huyền - góc nhọn)
→AB = AI (2 cạnh tương ứng)
BD = BI (2 cạnh tương ứng)
b) - Xét ΔBMD và ΔICD có:
Góc MBD = Góc CID (=90 độ)
BD = BI (CMT)
Góc BDM = Góc IDC (Đối đỉnh)
→ ΔBMD = ΔICD (g.c.g)
→ DM = DC (2 cạnh tương ứng)
BM = IC ( nt )
c) - Ta có:
AB = AI (CMT) và BM = IC (CMT)
→ AB + BM = AI + IC → AM = AC
→ ΔAMC cân tại A (1)
- Mà:
ΔABC là tam giác nửa đều (Góc B = 90 độ, Góc C = 30 độ → Góc A =60 độ) (2)
Từ (1) và (2)
→ ΔAMC là tam giác đều
d) - Ta có: MD = MC (CMT) (3)
- Xét ΔIDC có góc DIC = 90 độ
góc ICD = 30 độ
→ ID = \(\frac{1}{2}\) DC (Trong Δ vuông, cạnh đối diện với góc 30 độ bằng nửa cạnh huyền) (4)
Từ (3) và (4)
→ ID = \(\frac{1}{2}\) MD
- Xong rồi nhé
- Mất 1 tiếng ngồi vẽ hình và ngồi nghĩ cho bạn đấy
- GT, KL bạn tự làm
- Hon CM có hơi dài dòng còn có đúng không thì có đấy, chỉ là dài thôi
- Tham khảo, chép xong thì đọc lại xem hiểu không
- Bài này không phải dạng vừa đâu!!
- Có gì cho Hon không nạ
- Chúc bạn học tốt, thi học kì đứng trong TOP 3 nhann
a: Xét ΔABD vuông tại B và ΔAID vuông tại I có
AD chung
góc BAD=góc IAD
=>ΔABD=ΔAID
=>AB=AI
b: Xét ΔDBM vuông tại B và ΔDIC vuông tại I có
DB=DI
góc BDM=góc IDC
=>ΔBDM=ΔIDC
=>DM=DC
c: AB+BM=AM
AI+IC=AC
mà AB=AI và MB=IC
nên AM=AC
mà góc MAC=60 độ
nên ΔMAC đều
d: Xét ΔDBM vuông tại B có sin M=BD/DM
=>BD/DM=1/2
=>DM=2BD=2DI
a) tam giác ABC vuông tại A => AB2 + AC2 = BC2 ( định lý py-ta-go)
hay 92 + 122 = BC2
=> BC2 = 81 + 144 = 225 => BC = √225=15cm225=15cm
trong tam giác ABC có: AB < AC < BC
=> góc C < góc B < góc A (định lý)
b) xét tam giác ABD và tam giác MBD có:
góc A = góc M = 900 (gt)
BD chung
góc B1 = góc B2 (gt)
=> tam giác ABD = tam giác MBD (ch-gn)
c) xét tam giác ADE và tam giác MCD có:
góc A = góc M = 900 (gt)
AD = DM (tam giác ABD = tam giác MBD)
góc ADE = góc MDC (đối đỉnh)
=> tam giác ADE = tam giác MDC (g.c.g)
=> AE = MC (cạnh tương ứng)
ta có: BE = BA + AE
BC = BM + MC
mà BA = BM (tam giác ở câu a)
AE = MC (cmt)
=> BE = BC
=> tam giác BEC cân tại E
hok tốt
a: Xét ΔAIB và ΔAIC có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAHI=ΔAKI
=>IH=IK
c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có
IH=IK
\(\widehat{HIN}=\widehat{KIM}\)
Do đó: ΔHIN=ΔKIM
=>IN=IM và HN=KM
ΔAHI=ΔAKI
=>AH=AK
AH+HN=AN
AK+KM=AM
mà AH=AK và HN=KM
nên AN=AM
=>A nằm trên đường trung trực của NM(1)
IN=IM(cmt)
nên I nằm trên đường trung trực của MN(2)
PN=PM
=>P nằm trên đường trung trực của MN(3)
Từ (1),(2),(3) suy ra A,I,P thẳng hàng
Mình cx đg cần câu trả lời của bài này.
ai giải đc bài này ko ???