Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do AO là đường trung tuyến của tam giác ABC :
=) OB=OC =) O là trung điểm của BC
Và OD=OA =) O là trung điểm của AD
=) 2 đường chéo AD và BC cắt nhau tại trung điểm O
=) Tứ giác ABDC là hình bình hành (1)
Do AB \(\perp\)AC tại A =) \(\widehat{BAC}\)= 900 (2)
Từ (1) và (2) =) ABDC là hình chữ nhật
b) Do BH\(\perp\)AD
CK\(\perp\)AD
=) BH // CK (*)
Do BD // AC
=) \(\widehat{DAC}\)=\(\widehat{B\text{D}A}\)(2 góc so le trong)
Xét tam giác AKC ( \(\widehat{AKC}\)= 900) và tam giác DHB (\(\widehat{DHB}\)= 900) có :
AC=BD (tính chất hính chữ nhật)
\(\widehat{DAC}\)=\(\widehat{B\text{D}A}\)( chứng minh trên )
=) Tam giác AKC= Tam giác DHB ( cạch huyền - góc nhọn )
CK=BH (2 cạch tương ứng ) (**)
Tứ (*) và (**) =) Tứ giác BHCK là hình bình hành
=) BK // CH
b: Xét tứ giác ABHC có
M là trung điểm của đường chéo BC
M là trung điểm của đường chéo AH
Do đó: ABHC là hình bình hành
mà \(\widehat{CAB}=90^0\)
nên ABHC là hình chữ nhật
hay BC=AH
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE
=>ΔADE cân tại A
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>AH=AK
Xét ΔADE có AH/AD=AK/AE
nên HK//DE
c:
góc HBD+góc D=90 độ
góc KCE+góc E=90 độ
mà góc D=góc E
nên góc HBD=góc KCE
góc MBC=góc HBD
góc MCB=góc KCE
mà góc HBD=góc KCE
nên góc MBC=góc MCB
=>ΔMBC cân tại M
Xét ΔDBC có CM/CB=CH/CD
nên HM//BD
=>BD vuông góc HE
Xét ΔHBD có
HE,BE là đường cao
HE cắt BE tại E
=>E là trực tâm
=>DE vuông góc BH
Cho e sửa cái đề là Tính góc \(\widehat{ACK}\) và thêm cái điều kiện là \(AB>AC\)