Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
b: Xét tứ giác NKIM có
D là trung điểm của NI
D là trung điểm của KM
Do đó: NKIM là hình bình hành
mà NI vuông góc với KM
nên NKIM là hình thoi
c: Xét ΔABC có DN//AB
nên DN/AB=CN/CA=CD/CB
=>CN=1/2CA
hay N là trung điểm của AC
Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2
hay BM=1/2BA
=>M là trung điểm của AB
Ta có: ΔAHB vuông tại H
mà HM là đường trung tuyến
nên MA=MH
Ta có: ΔAHC vuông tại H
mà HN là đừog trung tuyến
nên HN=AN
Xét ΔMAN và ΔMHN có
MA=MH
AN=HN
MN chung
Do đó: ΔMAN=ΔMHN
Suy ra:góc MHN=90 độ
Ta có : ΔABC vuông tại A(gt)
AM là đường trung tuyến ứng với BC ( M là trung điểm BC )
⇒ AM = BM ( Tính chất đường trung tuyến ứng với cạnh huyền trong Δ vuông)
⇒ ΔAMB cân tại M
\(\Rightarrow\widehat{A_1}=\widehat{B}\left(1\right)\)
\(HI\perp AB\left(gt\right)\Rightarrow\widehat{HIA}=90^o\)
\(HK\perp AC\left(gt\right)\Rightarrow\widehat{HKA}=90^o\)
\(\widehat{A}=90^o\left(gt\right)\)
\(\Rightarrow AIHK\)có \(\widehat{A}=\widehat{HIA}=\widehat{HKA}=90^o\)
=> AIHK là hình CN ( dấu hiệu nhân biết )
Gọi N là giao điểm IK ; AH
=> NI = NA ( TÍnh chất hình chữ nhật) ⇒ ΔANI cân tại N
\(\Rightarrow\widehat{I_1}=\widehat{IAN}\left(3\right)\)Lại có \(\widehat{A_2}=\widehat{B}\)( cùng phụ với \(\widehat{C}\)) ( 2 )
Từ (1) và (2)
\(\Rightarrow\widehat{A_1}=\widehat{A}_2\left(4\right)\)Lại có : \(\widehat{IAN}+\widehat{A_2}=\widehat{A}=90^o\left(5\right)\)
Từ 3 ; 4 ; 5
\(\Rightarrow\widehat{I_1}+\widehat{A_1}=90^o\)mà \(\widehat{I_1}+\widehat{A_1}+\widehat{INA}=180^o\)
\(\Rightarrow90^o+\widehat{INA}=180^o\)
\(\Rightarrow\widehat{INA}=90^o\Rightarrow AM\perp IK\left(đpcm\right)\)
b: Xét tứ giác AIHK có
\(\widehat{KAI}=\widehat{AIH}=\widehat{AKH}=90^0\)
Do đó: AIHK là hình chữ nhật
Suy ra: IK=AH
Tham khảo:
https://hoc24.vn/cau-hoi/cho-tam-giac-abc-nhonabacco-duong-cao-ahgoi-mnik-lan-luot-la-trung-diem-cua-abachbhcachung-minh-tu-giac-mnki-la-hinh-binh-hanh-bchung-min.1671774771661
a) Tứ giác AKHI có 4 góc vuông nên nó là hình chữ nhật, có IK và AH là hai đường chéo bằng nhau và cắt nhau tại trung điểm mỗi đường. Vậy IK đi qua trung điểm của AH.
b) Tam giác vuông có KN là trung tuyến nên KN = 1/2HC = HN. Vậy tam giác NKH cân
Suy ra: góc KHN = góc HKN (1)
Tam giác OHK cân vì OH = OK.
Suy ra: góc OHK = góc OKH (2)
Mà góc OHK + góc KHN = 1 vuông (3)
Từ (1), (2), (3) Suy ra OKH + góc HKN = góc OKN = 1 vuông. Vậy NK vuông góc với KI (4)
Chứng minh tương tự: MI vuông góc với KI (5)
Từ (4) và (5) Suy ra MI // NK
Vậy tứ giác MNKI là hình thang vuông.
Khi MNKI là hình chữ nhật thì góc KNC = 1v Suy ra góc NCK = 45 độ. Vậy tam giác ABC vuông cân thì MNKI là hình chữ nhật.
c) AL // KN ( cặp góc đồng vị LAC và NKC bằng nhau vì cùng bằng góc C)
Mà NK vuông góc với IK ( câu b)
Suy ra AL vuông góc với IK