K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

https://h.vn/hoi-dap/tim-kiem?q=Cho+tam+gi%C3%A1c+ABC+vu%C3%B4ng+t%E1%BA%A1i+A.%28AB%3CAC%29+%C4%91%C6%B0%E1%BB%9Dng+cao+AH.+Tr%C3%AAn+c%E1%BA%A1nh+BC+l%E1%BA%A5y+M+sao+cho+BM%3DBA.+T%E1%BB%AB+M+k%E1%BA%BB+%C4%91%C6%B0%E1%BB%9Dng+th%E1%BA%B3ng+vu%C3%B4ng+g%C3%B3c+v%E1%BB%9Bi+AC%28N+thu%E1%BB%99c+AC%29+c%2Fm%3A++a%29+tam+gi%C3%A1c+AHN+c%C3%A2n++b%29+BC%2BAH%3EAB%2BAC++c%29+2AC2-BC%3DCH2-BH2&subject=0

k bt giải nhờ mạng |~ mạng giải ~ thông cảm cho

29 tháng 2 2020

A B C H M N

a) Nối AM

Do BA = BM => △ABM cân tại A

=> BAM = BMA 

Ta có: BAM + MAN = 90o => BMA + MAN = 90o

Lại có: MAN + AMN = 90o (△MAN vuông tại N)

=> HMA = NMA

Xét △HMA và △NMA có:

MHA = MNA (= 90o)

AM: chung

HMA = NMA (cmt)

=> △HMA = △NMA (ch-gn)

=> AH = AN (2 cạnh tương ứng)

=> △AHN cân tại A

b) Xét △ABC vuông tại A

=> BC2 = AB2 + AC2 (định lí Pytago)

=> AB2 + AC2 + AH > AB2 + AC2

=> BC + AH > AB + AC

c) Câu này hình như phải là chứng minh 2AC2 - BC2 = CH2 - BH2 chứ nhỉ? Nếu vậy thì cách làm như sau:

Xét △HAC vuông tại H

=> AC2 = HC2 + HA2 (định lí Pytago)

=> HC2 = AC2 - HA2

Xét △BHA vuông tại H

=> AB2 = HB2 + HA2 (định lí Pytago)

=> HB2 = AB2 - HA2

Khi đó:

CH2 - BH2 = AC2 - HA2 - AB2 + HA2

=> CH2 - BH2 = AC2 - AB2

=> CH2 - BH2 = AC2 + AC2 - BC2 (đpcm)

Xet ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE
=>ΔABC=ΔADE

=>BC=DE

12 tháng 5 2023

a) Xét ΔABE vuông tại E & ΔNBE vuông tại E có:

- BE là cạnh chung, BN = BA (giả thuyết)

Suy ra ΔABE = ΔNBE (cạnh huyền - cạnh góc vuông)

b) Theo đề ta có BH vuông góc với AD và HA = HD

Suy ra BH là đường trung trực của AD

Suy ra BA = BD (vì B nằm trên đường trung trực của AD)

c) Trong ΔNAB có AH và BE là đường cao, đồng quy tại điểm K

Suy ra NK là đường cao của ΔNAB, hay NK vuông góc với AB

Mà AC cũng vuông góc với AB, suy ra NK // CA

13 tháng 5 2023

a. - Vì BE vuông góc với AN (gt)
=> tam giác ABE vuông tại E (tc)
     tam giác NBE vuông tại E (tc)
- Xét tam giác vuông ABE và tam giác vuông NBE, có:
    + Chung BE
    + BA = BN (gt)
=> tam giác vuông ABE = tam giác vuông NBE (Cạnh huyền - cạnh  góc vuông)

b. - Vì AH là đường cao của tam giác ABC (gt)
=> tam giác ABH vuông tại H
     tam giác DBH vuông tại H
- Xét tam giác vuông ABH và tam giác vuông DBH, có:
    + Chung BH
    + HA = HD (gt)
=> tam giác vuông ABH = tam giác vuông DBH (2 cạnh góc vuông)
    => BA = BD (2 cạnh tương ứng)