Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(vì\)AD là phân giác suy ra góc BAD =góc DAC =45 ĐỘ
cos45 độ = AD/AB =4 /AB =1/ căn 2 suy ra AB =4 NHÂN CĂN 2
TH TỰ dùng sin 45 độ =dc/ac =5/ad =1/căn 2 suy ra AC =5 CĂN 2 ÁP DỤNG PITA GO TÌM RA CẠNH bc
b,
c: Xét ΔABD vuông tại B có BH là đường cao ứng với cạnh huyền AD
nên \(AH\cdot AD=AB^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AD=BH\cdot BC\)
c: Xét ΔABD vuông tại B có BH là đường cao ứng với cạnh huyền AD
nên \(AH\cdot AD=AB^2\left(1\right)\)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(BH\cdot BC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(AH\cdot AD=BH\cdot BC\)
a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:
AH2=BH.HC=9.16=144
<=>AH=√144=12((cm)
Áp dụng định lý Pytago vào tam giác vuông BHA ta có:
BA2=AH2+BH2=122+92=225
<=>BA=√225=15(cm)
Áp dụng định lý Pytago vào tam giác vuông CHA ta có:
CA2=AH2+CH2=122+162=20(cm)
Vậy AB=15cm,AC=20cm,AH=12cm
a) Mình nghĩ đề đúng phải là: CMR: \(\frac{HB}{HC}=\frac{IB^2}{IA^2}\)
Xét \(\Delta\)BEC có: Đường trung tuyến BA; BA vuông góc CE (tại A) => \(\Delta\)BEC cân tại B
=> ^BEC = ^BCE hay ^IEA = ^ACB. Mà ^ACB = ^IAB (=^HAB) (Cùng phụ ^HAC) nên ^IEA = ^IAB
Xét \(\Delta\)BAI và \(\Delta\)AEI có: ^AIE chung; IAB = ^IEA => \(\Delta\)BAI ~ \(\Delta\)AEI (g.g)
=> \(\frac{IB}{IA}=\frac{AB}{EA}\)=> \(\frac{IB}{IA}=\frac{AB}{AC}\)(Do AE=AC) => \(\frac{IB^2}{IA^2}=\frac{AB^2}{AC^2}\)
Dễ thấy \(\Delta\)BAH ~ \(\Delta\)ACH (g.g) => \(\frac{S_{BAH}}{S_{ACH}}=\frac{AB^2}{AC^2}\)
Do đó: \(\frac{IB^2}{IA^2}=\frac{S_{BAH}}{S_{ACH}}\). Lại có: \(\frac{S_{BAH}}{S_{ACH}}=\frac{HB.AH}{HC.AH}=\frac{HB}{HC}\)=> \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(đpcm).
b) Theo ĐL đường phân giác trong tam giác thì \(\frac{DB}{DC}=\frac{AB}{AC}\Rightarrow\frac{AB}{AC}=\frac{15}{20}=\frac{3}{4}\Rightarrow AC=\frac{4}{3}AB\)
Áp dụng ĐL Pytago cho \(\Delta\)ABC vuông tại A: \(AB^2+AC^2=BC^2\). Thay AC=4/3.AB, ta có:
\(AB^2+\frac{16}{9}AB^2=BC^2=1225\)\(\Rightarrow AB^2=441\) (cm)
Theo hệ thức lượng: \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{441}{35}=12,6\)(cm)
Suy ra: \(HD=DB-BH=15-12,6=2,4\); \(CH=BC-BH=22,4\)
Mặt khác \(\Delta\)BAI ~ \(\Delta\)AEI (cmt) => \(IA^2=IB.IE\) (1)
\(\Rightarrow IA^2=IB^2+IB.BE=IB^2+IB.BC=IB^2+35.IB\)
Lại có: \(\frac{IB^2}{IA^2}=\frac{HB}{HC}\)(câu a) nên \(\frac{IB^2}{IB^2+35.IB}=\frac{HB}{HC}=\frac{12,6}{22,4}=\frac{9}{16}\)
Đặt IB=x (x>0) , ta có phương trình sau:
\(\frac{x^2}{x^2+35x}=\frac{9}{16}\Rightarrow9x^2+315x=16x^2\Leftrightarrow7x^2-315x=0\)
\(\Leftrightarrow7x\left(x-45\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=45\end{cases}}\)(loại TH x=0 vì x > 0)
=> \(IB=45\)(cm) => IE = IB + BE = IB + BC = 45 + 35 = 80 (cm). Thế vào (1), ta được:
\(IA^2=45.80\Rightarrow IA=60\)(cm)
Ta sẽ có: \(S_{BAE}=S_{ABC}=\frac{AB.AC}{2}=\frac{AB.\frac{4}{3}AB}{2}=294\)(cm2)
\(S_{ABI}=\frac{BH.AI}{2}=\frac{12,6.60}{2}=378\)(cm2); \(S_{AID}=\frac{HD.AI}{2}=\frac{2,4.60}{2}=72\)(cm2)
Theo t/c diện tích miền đa giác: \(S_{AEID}=S_{BAE}+S_{ABI}+S_{AID}=294+378+72=744\)(cm2)
Vậy \(S_{AEID}=744\)cm2.