K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

dễ thui

Bài  4:Cho  tam giác abc vuông tại A.Từ C kẻ Cx vuông  góc với BC,gọi F là  giao điểm của Cx  và phân giác góc ABC,BF  cắt  AC  tại  E.Kẻ  CD  vuông  góc  với  EF  tại D,kéo  dài BA  cắt CD tại Sa)Chứng minh  CD là phân giác góc ECFb)DE=DF và  SE//CFFBài  5:Cho  tam  giác  ABC  cân tại A,góc  A  nhọn,đường  phân  giác AD.Trên  tia  đối  tia DC  lấy điểm M sao cho  MD=ADDa)Chứng  minh...
Đọc tiếp

Bài  4:Cho  tam giác abc vuông tại A.Từ C kẻ Cx vuông  góc với BC,gọi F là  giao điểm của Cx  và phân giác góc ABC,BF  cắt  AC  tại  E.Kẻ  CD  vuông  góc  với  EF  tại D,kéo  dài BA  cắt CD tại S

a)Chứng minh  CD là phân giác góc ECF

b)DE=DF và  SE//CFF

Bài  5:Cho  tam  giác  ABC  cân tại A,góc  A  nhọn,đường  phân  giác AD.Trên  tia  đối  tia DC  lấy điểm M sao cho  MD=ADD

a)Chứng  minh tam  giác ADM  vuông cân

b)Kẻ  BN  vuông góc AM tại N,BN  cắt AD tại O,chứng  minh  OM  vuông  góc  ABB

c)Chứng  minh OB=OC; AM//OC

Bài  6:Cho  tam  giác  ABC  vuông  tại A(AB<AC),đường  cao  AHH,trên  cạnh  BC  lấy điểm M sao cho BA=BMM

a)Chứng  minh  AM  là  phân  giác  của  góc  HAC

b)Gọi  K  là  hình  chiếu  vuông  góc của  M  trên AC,chứng  minh AM  là  đường  trung  trực  HK

c)I  là  hình  chiếu  vuông  góc  của  C  trên  AM,chứng  minh  AH,KM,CI cùng  đi  qua  1 điểm

Vẽ  hình  luôn  giúp  mình

2

6:

a: góc CAM+góc BAM=90 đọ

góc HAM+góc BMA=90 độ

góc BAM=góc BMA

=>góc CAM=góc HAM

=>AM là phân giác của góc HAC

b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có

AM chung

góc HAM=góc KAM

=>ΔAHM=ΔAKM

=>AH=AK và MH=MK

=>AM là trung trực của HK

c: Gọi giao của CI và AH là O

Xét ΔACO có

CH.AI là đường cao

CH cắt AI tại M

=>M là trực tam

=>OM vuông góc AC

=>O,M,K thẳng hàng

=>ĐPCM

9 tháng 4 2023

còn  2 bài  kia  giúp  mình  vs  nha

 

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.a) Tính độ dìa AC khi AB= 9cm, BC= 15cmb) Chứng minh: Tam giác ABD=tam giác EBDc) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC când) Chứng minh: AD<DCBài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE=BA. Qua E kẻ đường thẳng d vuông góc với BC và d cắt AC tại D.

a) Tính độ dìa AC khi AB= 9cm, BC= 15cm

b) Chứng minh: Tam giác ABD=tam giác EBD

c) Gọi H là giao điểm của đường thẳng AB và đường thẳng d. Chứng minh tam giác HBC cân

d) Chứng minh: AD<DC

Bài 2: Cho tam giác ABC vuông tại A có AB= 12cm, AC= 16cm.Kẻ BF là đường trung tuyến của tam giác ABC. Từ điểm C kẻ đường thẳng vuông góc với AC cắt đường trung tuyến BF tại D

a) Tính độ dài BC?

b) Chứng minh rằng: Tam giác ABF=tam giác CDF

c) Chứng minh: BF<(AB+BC):2

Bài 3: Cho tam giacsABC vuông tại A; tia phân giác của góc B cắt AC tại D. Kẻ DH vuông góc với BC\(\left(H\in BC\right)\). Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 9cm, AC= 12cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh: Tam giác KDC cân

d) Chứng minh: AB+AC>BD+DC
Bài 4: Cho tam giác ABC vuông tại A. Trên tia BC lấy điểm H sao cho BH=BA. Tia phân giác của góc B cắt AC tại D. Gọi K là giao điểm của AB và DH

a) Tính độ dài BC khi AB= 3cm, AC= 4cm

b) Chứng minh: Tam giác ABD=tam giác HBD

c) Chứng minh \(Dh\perp BC\)

d) So sánh DH với DK

 

 

6
3 tháng 5 2019

4 bài toàn là hình, lại khó, dài , mk nghĩ chắc ko ai tl giúp bn đâu, xl nha, ngay mk mới lp 6 cx chưa thể giải đc vì đã lp 7 đâu. ah hay là bn gửi tg bài 1 cho các bn ấy giải từ từ, cứ 1 đốg thì ai giải giúp bn đc. sorry nha

*In đậm: quan trọng.

3 tháng 5 2019

#)Góp ý :

Giải thì vẫn giải đc, chỉ tại dài quá, người nhìn thấy dài thì chẳng ai muốn giải đâu, vì lười, mak mún kiếm P nhanh mà, là mình thì vẫn giải đc nhưng sẽ mất tg đó, chắc 15-30p :v

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

b: Ta có: ΔBAD=ΔBHD

nên DA=DH

hay D nằm trên đường trung trực của AH(1)

Ta có: BA=BH

nên B nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH

hay BD⊥AH

12 tháng 2 2022

Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)

c) Xét tam giác ECK và tam giác ECA có:

EKC=EAC=90

EC cạnh chung

ECK=ECA ( vì CE là p/g của ABC)

=>Tam giác ECK=Tam giác ECA ( ch-gn)

=>CK=CA( 2 cạnh tương ứng)

Mà AB=HB( chứng minh a)

=>CK+BH=CA+AB

=>CH+KH+BK+HK=AC+AB

=>(BK+KH+CH)+HK=AC+AB

=>BC+HK=AB+AC (ĐPCM)

d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B

=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)

Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)

=\(\dfrac{360-90}{2}=135\)

=>BAK+2HAK+HAC=135

Mà BAK+HAC=BAC-HAK=90-HAK

=>90-HAK+2HAK=135

=>90+HAK=135

=>HAK=45

17 tháng 5 2017

.bạn à vẽ hình hc bạn đọc lại đề ghi đúng ko chứ mình vẽ hình ko ra

4 tháng 6 2020

cho tam giác ABC vuông tại A có góc B=60 độ.trên cạnh BC lấy điểm H sao cho HB = AB.đường thẳng vuông góc với BC tại H cắt AC tại D.chứng minh rằng :

a,BD là tia phân giác của góc ABC

b,tam giác BDC cân

c,DH là đường trung tuyến

d,AH= 1/2 BC

e,BD là trung trực của AH

a) Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔABD=ΔHBD(cạnh huyền-góc nhọn)

Suy ra: BA=BH(hai cạnh tương ứng)

18 tháng 4 2020

B C D M H A E K N

a, Xét 2 tam giác vuông : ABM và DBM

BM chung

\(\widehat{ABM}=\widehat{DBM}\)( do BM là phân giác góc B )

\(\Rightarrow\Delta ABM=\Delta DBM\)( cạnh huyền - góc nhọn )

\(\Rightarrow BA=BD\)( 2 cạnh tương ứng )

b. Xét 2 tam giác vuông : ABC và DBE có :

BA = BD ( c/m ỏ câu a )

\(\widehat{B}\)chung

\(\Rightarrow\Delta ABC=\Delta DBE\)( cạnh góc vuông - góc nhọn )

c, Xét 2 tam giác vuông : AMK và DMH

AM = DM ( 2 cạnh tg ứng do ABM = DBM )

\(\widehat{AMK}=\widehat{DMH}\)( đối đỉnh )

\(\Rightarrow\Delta AMK=\Delta DMH\)( cạnh huyền - góc nhọn )

\(\Rightarrow MK=MH\)( 2 cạnh tg ứng )

Xét 2 tam giác vuông : MNK và MNH

MK = HM ( cmt )

MN chung

\(\Rightarrow\Delta MNK=\Delta MNH\)( cạnh huyền - góc vuông )

\(\Rightarrow\widehat{MNK}=\widehat{MNH}\)( 2 góc tg ứng )

=> NM là tia phân giác của \(\widehat{HMK}\)( đpcm ) (1)

d, Do AK = DH ( 2 cạnh tg ứng \(\Delta AMK=\Delta DMH\))

KN = HN ( 2 cạnh tg ứng \(\Delta MNK=\Delta MNH\))

\(\Rightarrow AN=AK+KN=DH+HN=DN\)

Xét 2 tam giác : ABN và DBN

AB = DB ( cmt )

BN chung 

AN = BN ( cmt )

\(\Rightarrow\Delta ABN=\Delta DBN\left(c-c-c\right)\)

\(\Rightarrow\widehat{ANB}=\widehat{DNB}\)( 2 góc tg ứng )

=> NB là tia phân giác \(\widehat{AND}\)( 2 )

Từ (1)(2) 

=> B , M , N thẳng hàng