K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3 2017

góc BAM>Góc MAC

4 tháng 5 2016

Bạn tự vẽ hình nha, mk ko biết cách up hình lên 

Giải:

a) Xét hai tam giác ABM và tam giác ECM có:

 MB = MC (gt)

MA = ME (gt)

góc AMB = góc EMC (đối đỉnh)

\(\Rightarrow\Delta AMB=\Delta EMC\left(c.g.c\right)\) 

b) Xét 2 tg ACM và tg EBM có:

MA = ME (gt)

MC = MB (gt)

góc AMC = góc EMB (đối đỉnh)

\(\Rightarrow\Delta ACM=\Delta EBM\left(c.g.c\right)\)

\(\Rightarrow AC=EB\) (2 cạnh tương ứng)

Trong tg BCE có: góc BCE = \(90^0\) (góc tương ứng với góc ABM)

\(\Rightarrow\) BE là cạnh huyền

\(\Rightarrow\) BE > CF hay AC > CF

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=5^2+12^2=169\)

hay BC=13(cm)

b) Xét ΔMKC và ΔMAB có 

MK=MA(gt)

\(\widehat{KMC}=\widehat{AMB}\)(hai góc đối đỉnh)

MC=MB(M là trung điểm của BC)

Do đó: ΔMKC=ΔMAB(c-g-c)

a: Xét ΔMAB và ΔMEC có

MA=ME

góc AMB=góc EMC

MB=MC

=>ΔMAB=ΔMEC

b: AC>AB

=>AC>CE

c: góc BAM=góc CEA

mà góc CEA>góc CAM

nên góc BAM>góc CAM