Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì △ABC cân tại A => AB = AC
Xét △ABD vuông tại D và △ACE vuông tại E
Có: BAC là góc chung
AB = AC (cmt)
=> △ABD = △ACE (ch-gn)
c, Ta có: AE + BE = AB và AD + DC = AC
Mà AB = AC (cmt) ; AD = AE (△ABD = △ACE)
=> BE = DC
Xét △HEB vuông tại E và △HDC vuông tại D
Có: BE = DC (cmt)
EBH = DCH (△ABD = △ACE)
=> △HEB = △HDC (cgv-gnk)
=> BH = HC (2 cạnh tương ứng)
=> △BHC cân tại H
c, Vì AE = AD (cmt) => △AED cân tại A => AED = (180o - EAD) : 2
Vì △ABC cân tại A (gt) => ABC = (180o - BAC) : 2
=> AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> DE // BC (dhnb)
d, Xét △BAH và △CAH
Có: AB = AC (cmt)
ABH = ACH (cmt)
AH là cạnh chung
=> △BAH = △CAH (c.g.c)
=> BAH = CAH (2 góc tương ứng)
Xét △ABK và △ACK
Có: AB = AC (cmt)
BAK = CAK (cmt)
AK là cạnh chung
=> △ABK = △ACK (c.g.c)
=> BK = CK (2 cạnh tương ứng)
Xét △BHK và CMK
Có: HK = MK (gt)
HKB = MKC (2 góc đối đỉnh)
BK = CK (cmt)
=> △BHK = △CMK (c.g.c)
=> HBK = MCK (2 góc tương ứng)
Mà 2 góc này nằm ở vị trí so le trong
=> BH // MC (dhnb)
=> BD // MC (H BD)
Mà BD ⊥ AC (gt)
=> MC ⊥ AC (từ vuông góc song song)
=> ACM = 90o
=> △ACM vuông tại C
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
A B C M H D
a) Xét \(\Delta ABM\)và\(\Delta HBM\)có:\(\hept{\begin{cases}\widehat{BAM}=\widehat{BHM}=90^0\\BM\\\widehat{ABM}=\widehat{HBM}\end{cases}\Rightarrow\Delta ABM=\Delta HBM}\)(CẠNH HUYỀN GÓC NHỌN)
b)\(\Delta ABM=\Delta HBM\)(câu a)\(\Rightarrow BA=BH\)
Xét \(\Delta BAC\)và \(\Delta BHD\)có:\(\hept{\begin{cases}\widehat{BAC}=\widehat{BHD}=90^0\\BA=BH\\\widehat{B}\end{cases}\Rightarrow\Delta BAC=\Delta BHD\left(g.c.g\right)\Rightarrow AC=HD}\)
c)\(\Delta BAC=\Delta BHD\Rightarrow\hept{\begin{cases}BC=BD\\\widehat{ACB}=\widehat{HDB}\end{cases}}\)
Xét \(\Delta BMC\)và \(\Delta BMD\)có:\(\hept{\begin{cases}\widehat{MBC}=\widehat{MBD}\\BC=BD\\\widehat{BCM}=\widehat{BDM}\end{cases}\Rightarrow\Delta BMC=\Delta BMD\left(g.c.g\right)\Rightarrow MD=MC\Rightarrow\Delta MCD}\)CÂN
d)\(\Delta ABM=\Delta HBM\Rightarrow AM=HM\Rightarrow\Delta AHM\)CÂN\(\Rightarrow\widehat{MAH}=\widehat{MHA}=\frac{180^0-\widehat{AMH}}{2}\left(1\right)\)
\(\Delta MCD\)CÂN\(\Rightarrow\widehat{MDC}=\widehat{MCD}=\frac{180^0-\widehat{DMC}}{2}\left(2\right)\)
Mà \(\widehat{AMH}=\widehat{DMC}\)(Đối đỉnh) \(\left(3\right)\)
Từ (1) ; (2) và (3)\(\Rightarrow\widehat{MAH}=\widehat{MHA}=\widehat{MDC}=\widehat{MCD}\)(So le trong)\(\Rightarrow AH\)// \(CD\)
ỦNG HỘ MIK NHA BN!
Bạn tự vẽ hình nha ^^
a)--- Xét \(\Delta ABD\)và \(\Delta EBD\)có
\(AB=EB\left(GT\right)\)(1)
\(\widehat{BAD}=\widehat{BED}=90^o\)(2)
\(BD:\)Cạnh chung (3)
Từ (1) ;(2) và (3)
\(\Rightarrow\Delta ABD=\Delta EBD\)( c.g.c )
b)
---Theo đề bài ta có :
\(AB=EB\left(GT\right)\)(1)
và \(\widehat{ABC}=60^o\left(gt\right)\)(2)
Từ (1)và (2)\(\Rightarrow\Delta ABE\)đều (đpcm)
--- Vì \(\Delta ABE\)đều
\(\Rightarrow AB=BE=AE\)
Mà \(AB=6cm\)(gt)
...\(AE=EC\)
\(\Rightarrow EC=6cm\)
mà \(BE=6cm\)
Có \(EC+BE=BC\)
\(\Rightarrow6+6=12cm\)
Vậy BC =12cm
DC làm sao là tia phân giác của ACD được .Bạn có viết nhầm đề bài ko? Nếu sửa lại cho đúng thì mình sẽ giúp bạn.
Cho mình sửa lại đề bài :
Cho tam giác ABC vuông tại A. Kẻ CD là phân giác của góc ACB ( D thuộc AB ). Kẻ AE vuông góc CD tại E, AE cắt BC tại F.
_-_-_-_-_-_-_-_-_-_-_-
Note : thực lòng xin lỗi các bạn và cảm ơn bạn Pham Van Hung đã nhắc nhở tôi.
làm ơn giúp tôi đi, mai t thi rồi