K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2021

a) Xét tứ giác ACDB có: O là trung điểm của BC; D là điểm đối xứng của A qua O (gt)

=> Tứ giác ACDB là hình bình hành ( 2 đường chéo cắt nhau tại trung điểm mỗi đường ) (1)

Tam giác ABC vuông tại A => AB vuông góc AC (2)

Từ (1) và (2) => ABCD là hình chữ nhật 

b) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A, ta có:

     \(AB^2+AC^2=BC^2\)

=> \(AC^2=BC^2-AB^2\)

=> \(AC^2=10^2-8^2\)

=> \(AC^2=36\)

=> AC = 6 (cm)

Chu vi hình chữ nhật là \(2\left(AB+AC\right)=2\left(6+8\right)=28\left(cm\right)\)

Chúc bạn học tốt!!!

a) Xét tứ giác ABDC có 

O là trung điểm của đường chéo BC

O là trung điểm của đường chéo AD

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=10^2-8^2=36\)

hay AC=6(cm)

Ta có: ABDC là hình chữ nhật(cmt)

nên \(C_{ABDC}=\left(AC+AB\right)\cdot2=\left(6+8\right)\cdot2=28\left(cm\right)\)

2 tháng 1 2023

Giải chi tiết giúp em ạ🥺

a: Xét ΔABC có

BE/BC=BD/BA

nên ED//AC và ED=AC/2

=>ED//AF và ED=AF

=>ADEF là hình bình hành

mà góc FAD=90 độ

nên ADEF là hình chữ nhật

b: Xét tứ giác BMAE có

D là trung điểm chung của BA vàME

EA=EB

Do đó: BMAE là hình thoi

c: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)

S=1/2*3*4=6(cm2)

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

=>AD=BC

mà BC=10cm

nên AD=10cm

b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có

MA=MD

\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)

Do đó: ΔMHA=ΔMKD

=>MH=MK

=>M là trung điểm của HK

Xét tứ giác AHDK có

M là trung điểm chung của AD và HK

=>AHDK là hình bình hành

=>AK//DH

c: E đối xứng A qua BC

=>BC là đường trung trực của AE

=>BC\(\perp\)AE tại trung điểm của AE(1)

Ta có: BC\(\perp\)AE

BC\(\perp\)AH

AE,AH có điểm chung là A

Do đó: E,A,H thẳng hàng(2)

Từ (1) và (2) suy ra H là trung điểm của AE

Xét ΔADE có

H,M lần lượt là trung điểm của AE,AD

=>HM là đường trung bình của ΔADE

=>HM//DE

mà \(H\in BC;M\in\)BC

nên DE//BC

Xét ΔCAE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

=>CA=CE

mà CA=BD(ABDC là hình chữ nhật)

nên CE=BD

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

Hình thang BEDC có BD=CE

nên BEDC là hình thang cân

30 tháng 11 2021

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

18 tháng 12 2020

B A C M D E

18 tháng 12 2020

A, Xét tứ giác ABCD có

MB=MC=1/2BC(M là trung điểm BC-gt)

MD=MA=1/2AD( M là trung điểm AD-gt)

mà AD cắt BC tại M

->ABCD là hbh

Ta có ABCD là hình bh ( cmt)

mà có góc BAC = 90 độ( tam gáic ABC vuông tại A-gt)

-> ABCD là hcn(Đpcm)

B, Gọi I là giao điêm của AB và EM 

Ta có góc BIM=90 độ( do M đối E qua AB-gt)

          góc BAC = 90 độ( tam giác ABC vuông tại A-gt)

 mà hai góc vị trí đồng vị

-> IM song song AC

Xét tam giác  BAC có

M là trung điểm BC(gt)

IM song song AC( cmt)

-> I là trung điểm AB

Ta có

IA=IB=1/2AB( I là trung điểm AB-cmt)

IE=IM=1/2EM(M đối E qua AB-gt)

mà EM cắt AB tại I

-> EAMB là hình bình hành

Mà AB vuông góc EM ( M đối E qua AB-gt)

-> EAMB là hình thoi( đpcm)

Xong rùi nha bnoaoa      

27 tháng 12 2022

 hbh abcd có ab =ac, m là trung điểm của BC e đối xưng với a qua m. A/ tứ giác abec là hình gì ?vì sao ?B/chứng minh DC =ce

a) Xét tứ giác AMBE có 

D là trung điểm của đường chéo AB(gt)

D là trung điểm của đường chéo ME(M và E đối xứng nhau qua D)Do đó: AMBE là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Ta có: AMBE là hình bình hành(cmt)

nên AM//BE và AM=BE(Hai cạnh đối của hình bình hành AMBE)

mà \(C\in EB\) và EB=EC(E là trung điểm của BC)

nên AM//CE và AM=CE

Xét tứ giác AMEC có 

AM//CE(cmt)

AM=CE(cmt)

Do đó: AMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)

b) Ta có: ΔABC cân tại A(gt)

mà AE là đường trung tuyến ứng với cạnh đáy BC(E là trung điểm của BC)

nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)

⇔AE⊥BC

hay \(\widehat{AEB}=90^0\)

Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)(cmt)

nên AMBE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

c) Ta có: E là trung điểm của BC(gt)

nên \(BE=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)

Ta có: ΔABE vuông tại E(\(\widehat{AEB}=90^0\))

nên \(S_{ABE}=\dfrac{AE\cdot EB}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)

24 tháng 9 2017

a,BC= 25 và AO=12,5

b,ta có tứ giác abcd có gốc a bằng 90 độ(giả thiết ) cb = ad

a: Xét tứ giác ABDC có 

I là trung điểm của AD

I là trung điểm của BC

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật