Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mk chỉ chứng minh chứ hông vẽ hình đâu nha !!!
C/m:
Từ giả thiết ta có:
\(\widehat{BAC}=180^0-\left(\widehat{ABC}+\widehat{ACB}\right)=180^0-\left(75^0+60^0\right)=45^0\) \(\left(.\right)\)
\(\widehat{B}_2=\widehat{ABC}-\widehat{B_1}=75^0-45^0=30^0\)
\(\widehat{C}_2=\widehat{ACB}-\widehat{C_1}=60^0-45^0=15^0\)
Giả sử \(MA\ne MB\)ta xét 2 trường hợp:
T/ hợp 1: \(MA< MB\)
Xét \(\Delta MAB,\)vì \(MA< MB\)nên \(\widehat{B_2}< \widehat{A}_2\)
Nối MA.
Để chứng minh MA =MB. Ta dùng phản chứng.
G/s: \(MA\ne MB\)
Vì tam giác MBC vuông cân => MB=MC và \(\widehat{MCB}=\widehat{MBC}=45^o\)
Xét tam giác ABC có: \(\widehat{ACB}=60^o;\widehat{ABC}=75^o\)=> \(\widehat{CAB}=180^o-60^o-75^o=45^o\)
Vì M nằm trong tam giác ABC => \(\widehat{ACM}=\widehat{ACB}-\widehat{MCB}=60^o-45^o=15^o\)và \(\widehat{ABM}=\widehat{ABC}-\widehat{MBC}=75^o-45^o=30^o\)
+) TH1: MA> MB=MC
Xét tam giác MAB có: MA >MB => ^MAB < ^MBA => \(\widehat{MAB}< 30^o\)
Xét tam giác MAC có: MA >MC => ^MAC < ^MCA => \(\widehat{MAC}< 15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}< 30^o+15^o\Rightarrow\widehat{BAC}< 45^o\)(vô lí)
+) TH1: MA< MB=MC
Xét tam giác MAB có: MA <MB => ^MAB > ^MBA => \(\widehat{MAB}>30^o\)
Xét tam giác MAC có: MA <MC => ^MAC > ^MCA => \(\widehat{MAC}>15^o\)
=> \(\widehat{BAC}=\widehat{BAM}+\widehat{CAM}>30^o+15^o\Rightarrow\widehat{BAC}>45^o\)(vô lí)
=> Điều giả sử là sai
=> MA=MB
Câu hỏi của Nguyễn Vũ Thu Hương - Toán lớp 7 - Học toán với OnlineMath
Xét \(\Delta CMB\) và \(\Delta CMA\) có:
MC chung
\(\widehat{BMC}=\widehat{AMC}(=90^0)\)
MB=MA (gt)
=> \(\Delta CMB = \Delta CMA\)(c.g.c)
=> CA = CB (2 cạnh tương ứng).
=> Tam giác ABC cân tại C.
Mà \(\widehat B=\) 60o
=> Tam giác ABC đều.
Trên tia CA lấy điểm D sao cho CD=CB
góc ABC+góc BAC+góc ACB=180o (tổng 3 góc trong tam giác) => góc ABC+100o+góc ACB=180o
=>góc ABC+góc ACB=80o mà góc ABC=góc ACB (tam giác ABC cân tại A) =>góc ABC=góc ACB=40o
Xét tam giác BCM và tam giác DCM có: CB=CD (dựng hình);góc ABC=góc ACB=40o ; CM chung
=>tam giác BCM = tam giác DCM (c.g.c) => MD=MB (2 cạnh tương ứng) => tam giác MBD cân tại M (*)
Mặt khác CD=CB => tam giác BDC cân tại C => góc CBD=góc CDB
góc CBD+góc BCD+góc BDC=180o => góc CBD+40o+góc BDC=180o =>góc CBD+góc BDC=140o
mà góc CBD=góc BDC (tam giác BDC cân tại C) => góc CBD=góc BDC=70o
góc CBD=góc CBM+góc DBM=góc 10o+góc DBM=70o => góc DBM=60o kết hợp với (*) => tam giác MDB đều
rồi bạn chứng minh tiếp tam giác ABD=tam giác ABM => góc ADB=góc AMB=70o
Cách làm của mình giống với Trà My nhé <3
Chúc bạn học tốt !!! <3
Trên một nửa mặt phẳng bờ BC chứa điểm A vẽ \(\Delta BCD\)đều
Từ đó xét các tam giác bằng nhau
Bài này trình bày dài lắm nên không trình bày hết ra đâu nha chỉ gợi ý bước đầu thôi ! Thông cảm <3
a) Ta có ^ABH + ^BAH = 90° Măt khác ^CAH + ^BAH = 90°
=> ^ABH = ^CAH
Xét ▲ABH và ▲CAK có:
góc H = góc C (= 90°)
AB = AC (T.g ABC vuông cân)
góc ABH = góc CAH (cmt)
=> △ABH = △CAK (c.h-g.n)
=> BH = AK
b) Ta có BH//CK (Cùng ┴ AK)
=>góc HBM = góc MCK (So Le Ttrong)(1)
Mặt khác góc MAE + góc AEM = 90°(2)
Và góc MCK + góc CEK = 90°(3)
Và góc AEM = góc CEK (4)
Từ 2,3,4 => góc MAE = góc ECK (5)
Từ 1,5 => góc HBM = góc MAE
Ta lại có AM là trung tuyến của tam giác vuông ABC nên AM = BM =MC = 1/2 BC
Xét tam giác MBH và tam giác MAK có:
MB = AM (cmt)
góc HBM = góc MAK(cmt)
BH = AK (cmt)
=> △MBH = △MAK (c.g.c)
c) Theo câu a, b ta có: AH = CK; MH = MK; AM = MC nên tam giác AMH = tam giác CMK (c.c.c)
=> góc AMH = góc CMK; mà góc AMH + góc HMC = 90 độ
=> góc CMK + góc HMC = 90° hay góc HMK = 90°
Tam giác HMK có MK = MH và góc HMK = 90° nên vuông cân tại M (đpcm).