Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC có
E là trung điểm của BC
EF//AB
Do đó: F là trung điểm của AC
Xét tứ giác AECM có
F là trung điểm của AC
F là trung điểm của EM
Do đó: AECM là hình bình hành
=>AM//CE
=>AM//CB
Xét tứ giác NMBE có
F là trung điểm chung của NB và ME
=>NMBE là hình bình hành
=>NM//BE
=>NM//BC
AM//BC
NM//BC
mà AM,NM có điểm chung là M
nên M,N,A thẳng hàng
Xét tứ giác
a: Xét tứ giác ANME có
\(\widehat{ANM}=\widehat{AEM}=\widehat{EAN}=90^0\)
Do đó: ANME là hình chữ nhật
Suy ra: AM=NE
Hình bạn có thể tự vẽ ??
a, Ta có : Tam giác ABC đều, AH là đường cao => AH đồng thời là đường trung tuyến của tam giác ABC
=> H là trung điểm của BC => BH = 1/2 BC (1)
Mà M là trung điểm của AB => BM = 1/2 AB (2)
Lại có : AB = BC ( do tam giác ABC đều ) (3)
Từ (1),(2),(3) => BM = BH
=> Tam giác BMH cân tại B ( định nghĩa )
Mà góc B = 60 độ ( do tam giác ABC đều-gt)
=> BMH là tam giác đều
=> Góc MBH = góc MHB
Mà góc B = Góc ACB ( do tam giác ABC đều )
=> góc MHB = góc ACB
Mà 2 góc này ở vị trí đồng vị khi HC cắt MH, AC
=> MH//AC ( dấu hiệu nhận biết 2 đường thẳng song song )
Xét tứ giác AMHC, có :
MH//AC - cmt
=> Tứ giác AMHC là hình thang (định nghĩa)
Xét hình thang AMHC (MH//AC) , có
góc MAC = góc ACH ( do tam giác ABC đều -gt)
=> Hình thang AMHC là hình thang cân (định lí)
Vậy hình thang AMHC là hình thang cân
b, Ta có : BE, CF lần lượt vuông góc với đường thẳng MH
=> BE//CF ( quan hệ giữa tính vuông góc với tính song song)
=> góc EBH = góc HCF (2 góc so le trong)
Xét tam giác BEH và tam giác CHF,có :
HB=HC ( do H là trung điểm của BC-cmt)
góc EBH = góc HCF -cmt
góc EHB = góc FHC - 2 góc đối đỉnh
Do đó tam giác BEH = tam giác CFH (gcg)
=> BE = CF (2 góc tương ứng)
Xét tứ giác BEFC, có :
BE//CF -cmt
BE=CF - cmt
=> Tứ giác BEFC là hình bình hành ( định lí )
=> BF = CE (định lí )
Vậy BF=CE.
a,Ta có \(FM//AD\left(gt\right)\Rightarrow\widehat{EFA}=\widehat{DAB}\left(đvị\right);\widehat{FEA}=\widehat{DAE}\left(slt\right)\)
mà \(\widehat{DAB}=\widehat{DAE}\Rightarrow\widehat{EFA}=\widehat{FEA}\)
\(\Rightarrow\Delta AFE\)cân tại A
xét \(\Delta BMF\left(AD//MF\right)\)Áp dụng định lí ta-let ta có
\(\frac{BF}{AF}=\frac{BM}{DM}\)
b, \(\Delta ABC\)có AD là đường phân giác
\(\Rightarrow\frac{BD}{DC}=\frac{AB}{AC}\Rightarrow\frac{BD}{AB}=\frac{DC}{AC}^{^{\left(1\right)}}\)
Ta có AD//EM => \(\widehat{EMD}=\widehat{ADB};\widehat{ADM}=\widehat{EMC}\left(đvị\right)\)
Xét \(\Delta ECM\)và \(\Delta ACD\)có
\(\widehat{C}:chung \)
\(\widehat{EMC}=\widehat{ADC}\left(cmt\right)\)
\(\Rightarrow\Delta ECM\)VÀ \(\Delta ACD\)đồng dạng (g.g)
\(\Rightarrow\frac{CM}{CE}=\frac{CD}{CA}^{^{\left(2\right)}}\)
Chứng minh tương tự ta có
\(\Delta ABD\)và \(\Delta FAM\)đồng dạng (g.g)
\(\Rightarrow\frac{DB}{AB}=\frac{MB}{BF}^{^{\left(3\right)}}\)
Từ (1)(2)(3) \(\Rightarrow\frac{CM}{CE}=\frac{MB}{BF}\) mà CM=MB (gt) nên CE=BF
p/s: câu c để mình nghĩ tiếp
a) ta có AM=MD (gt)
BM=MC (AM là trung tuyến của tam giác)
Mà AD cắt BC tai M
=> ABCD là hình bình hành
Mà \(\widehat{BAC}=90^{\sigma}\) (gt)
=> ABCD là hình chữ nhật
b) ta có \(BI\perp AD\) (gt)
lại có \(CK\perp AD\) (gt)
=> BI // CK
bn coi lại câu c có sai đề k, nếu đúng thì mk chỉ lm đc 2 câu trên thôi!
Chọn mk nha
Mình không biết vẽ hình khi trả lời nên bạn tự vẽ nhé
Đầu tiên chứng minh \(NE=\frac{1}{6}AN\)
Qua E kẻ đường thẳng song song BF cắt AC tại K
Theo ta-lét ta có:
\(\frac{FK}{FC}=\frac{BE}{BC}=\frac{1}{3}\)=>\(\frac{FK}{ÀF}=\frac{1}{6}=\frac{NE}{AN}\)
Từ E,N,C kẻ các đường cao tới AB lần lượt là H,G,I
Theo talet ta có
\(\frac{EH}{CI}=\frac{BE}{BC}=\frac{1}{3},\frac{NG}{EH}=\frac{AN}{AE}=\frac{6}{7}\)
=> \(\frac{NG}{CI}=\frac{2}{7}\)=> \(\frac{NG.AB}{CI.AB}=\frac{2}{7}\)
=> \(\frac{S_{ABN}}{S_{ABC}}=\frac{2}{7}\)
Tương tự \(\frac{S_{BPC}}{S_{ABC}}=\frac{2}{7}\),\(\frac{S_{AMC}}{S_{ABC}}=\frac{2}{7}\)
=> \(S_{MNP}=S_{ABC}-S_{AMC}-S_{ABN}-S_{BCP}=\frac{1}{7}S_{ABC}\)
Vậy \(S_{MNP}=\frac{1}{7}S_{ABC}\)