K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2016

a) Ta có ^BEA = 90 - ^ ABE

             ^BEH = 90 - ^EBH 

mà ^ABE = ^EBH ( do BE là tia phân giác)

=> ^BEA=^BEH

Xét tam giác ABE và Tam giác HBE có

           ^ABE=^BEH (gt)

            BE chung 

            ^BEA=^BEH (cmt)

=> tam giác ABE=Tam giác HBE

b) chỉ cần chứng minh BE là đườn trug tuyến là xog

17 tháng 5 2018

a) Xét tam giác ABE vuông tại A và ta giác HBE vuông tại H

có: BE là cạnh chung

góc ABE = góc HBE (gt)

\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)

=> AE = HE ( 2 cạnh tương ứng)

Xét tam giác AEM vuông tại A và tam giác HEC vuông tại H

có: AE = HE ( cmt)

góc AEM = góc HEC ( đối đỉnh)

\(\Rightarrow\Delta AEM=\Delta HEC\left(cgv-gn\right)\)

=> EM = EC ( 2 cạnh tương ứng)

c) Gọi BE cắt CM tại K

ta có: \(\Delta ABE=\Delta HBE\left(pa\right)\)

=> AB = HB ( 2 cạnh tương ứng) (1)

ta có: \(\Delta AEM=\Delta HEC\) ( chứng minh phần b)

=> AM = HC ( 2 cạnh tương ứng) (2)

Từ (1);(2) => AB + AM = HB + HC

                => BM = BC (*)

Xét tam giác BMH vuông tại H

có: BM > MH ( quan hệ cạnh huyền, cạnh góc vuông) (**)

Từ (*), (**) => BC>MH

mk ko bít kẻ hình trên này, sorry bn nha!

      

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH...
Đọc tiếp

Bài 1 : Cho xOy có Oz là tia phân giác, M là điểm bất kì thuộc tia Oz. Qua M kẻ đường thẳng a vuông góc với Ox tại a cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D. Chứng minh tam giác AOM bằng tam giác BOM  ?

Bài 2 : Cho tam giác ABC có góc A = 90* và đường phân giác BH (H thuộc AC). Kẻ HM vuông góc với BC (M thuộc BC). Gọi N là giao điểm của AB và MH. Chứng minh tam giác ABH bằng tam giác MBH, tam giác ACE= tam giác AKE?

Bài 3: Cho tam giác ABC vuông tại C có góc A = 60* và đường phân gác của góc BAC cắt BC tại E. Kẻ EK vuông góc AB tại K (K thuộc AB).  Kẻ BD vuông góc với AE tại D (D thuộc AE). Chứng minh tam giác ACE = tam giác AKE

Bài 4: Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc BC tại H (H thuộc BC). Chứng minh tam giác ABE = tam giác HBE ?

0
11 tháng 2 2018

khó thể xem trên mạng

2 tháng 5 2018

Hình tự vẽ

a)Xét hai tam giác vuông ABE và HBE CÓ:

AE-chung

góc ABE=góc HBE(gt)

=>tam giác ABE=tam giác HBE(ch-gn)

b)Có tam giác ABE=tam giác HBE(cmt)

=>AB=BH

=>Tam giác BHA cân tại B

mà BE là p/g của góc ABH

=>BE là đường cao, đường trung tuyến

=>BE\(\perp\) AH

c)Xét tam giác AEK và tam giác HEC CÓ

góc KAE=góc EHC=900

AE=EH

góc AEK=góc HEC

=>tam giác AEK= tam giác HEC(c.g.c)

=>EK=EC

d)Xét tam giác EHC có góc EHC=900

=> EC là cạnh lớn nhất

=>EC>EH

Mà EH=AE

=>EC>AE

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :a) BD là đường trung trực AEb) DF=DCc) AD<DC4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: a) tam giác ABE = tam giác HBEb) BE là đường trung trực của đoạn thẳng...
Đọc tiếp

3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :

a) BD là đường trung trực AE

b) DF=DC

c) AD<DC

4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng: 

a) tam giác ABE = tam giác HBE

b) BE là đường trung trực của đoạn thẳng AH.

c) EK = EC và AE < EC

5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.

Chứng minh :
a) AM là tia phân giác góc A

b) tam giác ABD = tam giác ACD

c) tam giác BCD là tam giác cân

6.  Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.

a) Chứng minh : AD=DH

b) So sánh độ dài hai cạnh AD và DC

c) Chứng minh tam giác KBC là tam giác cân

1
29 tháng 4 2016

5 )

tự vẽ hình nha bạn 

a)

Xét tam giác ABM và tam giác ACM  có :

AM  cạnh chung 

AB = AC (gt)

BM = CM  (gt)

suy ra : tam giác ABM = tam giác ACM ( c-c-c)

suy ra : góc BAM =  góc CAM  ( 2 góc tương ứng )

Hay AM  là tia phân giác của góc A

b)

Xét tam giác ABD  và tam giác ACD có :

AD cạnh chung 

góc BAM  = góc CAM ( c/m câu a)

AB = AC (gt)

suy ra tam giác ABD  = tam giác ACD ( c-g-c)

suy ra : BD = CD ( 2 cạnh tương ứng)  

C) hay tam giác BDC cân tại D