Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét ΔABD và ΔEBD có:
AB=BE(gt)
ABDˆ=EBDˆ(gt)ABD^=EBD^(gt)
BD:cạnh chung
=> ΔABD=ΔEBD(c.g.c)
=> BADˆ=BEDˆ=90oBAD^=BED^=90o
=> DE⊥BCDE⊥BC
Vì: ΔABD=ΔEBD(cmt)
=>AD=DE
Vì: AB=BE(gt) ; AD=DE(cmt)
=> B,D thuộc vào đường trung trực của đt AE
=>BD là đường trung trực của đt AE
=>AE⊥BDAE⊥BD
b) Xét ΔDEC vuông tại E(cmt)
=> DE<DCDE<DC
Mà: DE=AD
=> AD<DC
c)Vì: BF=BA+AF ; BC=BE+EC
Mà: BF=BC(gt); BE=BA(gt)
=>AF=EC
Xét ΔADF và ΔEDC có:
AF=EC(cmt)
FADˆ=DECˆ=90o(cmt)FAD^=DEC^=90o(cmt)
AD=DE(cmt)
=>ΔADF=ΔEDC(c.g.c)
a: Xét ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: DE=DA
DA<DF
=>DE<DF
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>Dlà trực tâm
=>BD vuông góc FC
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
b: ΔABD=ΔEBD
=>\(\widehat{BAD}=\widehat{BED}\)
mà \(\widehat{BAD}=90^0\)
nên \(\widehat{BED}=90^0\)
Xét ΔDAF và ΔDEC có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DF=DC
Do đó: ΔDAF=ΔDEC
=>AF=CE
c: Ta có: ΔDAF=ΔDEC
=>\(\widehat{DAF}=\widehat{DEC}\)
mà \(\widehat{DEC}=90^0\)
nên \(\widehat{DAF}=90^0\)
Ta có: \(\widehat{BAD}+\widehat{DAF}=\widehat{BAF}\)
=>\(\widehat{BAF}=90^0+90^0=180^0\)
=>B,A,F thẳng hàng
Xét ΔBFC có BA/AF=BE/EC
nên AE//FC
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
a) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(ΔABC vuông tại A)
nên \(\widehat{BED}=90^0\)
hay ED\(\perp\)BC(Đpcm)