K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2020

A B C H

TA CÓ BH + HC = BC

=> BC = 9+16=25

THEO ĐỊNH LÝ PITAGO XÉT \(\Delta ABC\)VUÔNG TẠI A CÓ

\(BC^2=AB^2+AC^2\)

\(AB^2=BC^2-AC^2\)

\(AB^2=25^2-5^2\)

......

AH TƯƠNG TỰ

25 tháng 1 2022

Xét tam giác ABC vuông tại A, đường cao AH

Áp dụng hệ thức : AH^2 = HB . HC = 16 . 9 

=> AH = 4 . 3 = 12 cm 

25 tháng 1 2022

undefined

Áp dụng hệ thức liên quan tới đường cao vào Δvuông ABC, ta được:

AH²= BH.CH = 9.16 = 144

⇒ AH=12 (cm)

5 tháng 3 2022

Theo định lí Pytago tam giác ABC vuông tại A

\(BC=\sqrt{AB^2+AC^2}=10cm\)

Xét tam giác ABC vuông tại A, đường cao AH 

* Áp dụng hệ thức \(AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{48}{10}=\dfrac{24}{5}cm\)

* Áp dụng hệ thức \(AB^2=HB.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{36}{10}=\dfrac{18}{5}cm\)

\(CH=BC-BH=10-\dfrac{18}{5}=\dfrac{32}{5}cm\)

20 tháng 2 2015

bài này ko đủ dữ kiện. nếu bổ sung dữ kiện thì ta có thể tính dc với cách tính của định lý pitago.những bài này thường có 3 dữ kiện trở lên 

 

cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC ) 

    a) CHỨNG MINH GÓC BAH = GÓC CEB

    b) CHO AH= 3 cm , BC= 8 cm . TÍNH ĐỘ DÀI AC

    c) KẺ HE VUÔNG GÓC AB , HD VUÔNG GÓC AC , CHỨNG MINH AE=AD 

    d) CHỨNG MINH ED SONG SONG BC

trả lời :

A B C H 2cm 8cm

Xét \(\Delta\)ABC vuông tại A , có:

AH là đường cao (H\(\in\)BC)

Ta lại có: BC = HB + HC = 2 + 8 = 10 (cm) (1)

\(\Delta\)ABC vuông tại A

=> BC là cạnh huyền  (2)

Từ (1) và (2) => AH = \(\frac{1}{2}\)BC = 4(cm)  

19 tháng 2 2020

a) tam giác ABC có

A=90 độ

C= 20 độ

=> 180 độ - (90+20)= B

B= 180 - 110 = 70

b)xét hai tam giác ABH và ABH có

BH=HD

AH-chung

BHA=DHA=90

=>hai tam giác bằng nhau (c-g-c)

hai câu còn lại mk chịu

chúc bạn hok tốt nhahaha

19 tháng 2 2020

c, DE // AB (Gt)

=> góc EDH = góc ABH (slt)

xét tam giác AHB và tam giác EHD có : HD = HB (gt)

góc AHB = gócDHE (đối đỉnh)

=> tam giác AHB = tam giác EHD (c-g-c)

d, DE // AB

AB _|_ AC

=> DE _|_ AC

AH _|_ AE (gt)

xét tam giác ACE có : ED cắt AH tại D

=> AD _|_ CE (đl)