K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2017

( Hình mình hk vẽ nha bạn, thông cảm -.- )

a,

*Xét tam giác MAB và tam giác MDC có:

+ MB = MC ( vì M là trung điểm của BC )

+ Góc BMA = góc DMC ( 2 góc đối đỉnh )

+ AM = AD ( gt )

\(\Rightarrow\)Tam giác MAB = tam giác MDC (c.g.c)

*  Vì tam giác ABC vuông tại A \(\Rightarrow\)góc ABC + góc ACB = 90\(^0\)

Mà góc ABC = góc MCD ( vì tam giác MAB = tam giác MDC )

\(\Rightarrow\)Góc ACB + góc MCD = 90 \(^0\)

\(\Rightarrow\)Góc DCA = 90\(^0\)

\(\Rightarrow\)AC vuông góc CD

b,  Xét tam giác BAN và tam giác DCN có 

+ BA = DC ( vì tam giác MAB = tam giác MDC )

+ Góc BAC =  góc DCA = 90\(^0\)

+ AN = NC ( vì N là trung điểm của AC )

\(\Rightarrow\)Tam giác BAN = tam giác DCN ( c.g.c )

\(\Rightarrow\)BN = DN ( 2 cạnh tương ứng )

                                k mình nhaaaaaaaaaaaaaaaaaaa

18 tháng 12 2021

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)

MB=MC

Do đó: ΔMAB=ΔMDC

Trả lời:

     P/s: Mk chỉ làm đc nhiu đây!!!~^-^

a) Xét tg MAB và tg MDC có:

AM = DM (gt)

MB = MC (suy từ gt)

gAMB = gDMC (đđ)

=> tgMAB = tgMDC (c.g.c)

b) Đề nghị sửa thành: AB = CD và AB // CD.

Vì tgMAB = tgMDC (câu a)

=> AB = CD (2 cạnh tt/ư)

và ABMˆABM^ = DCMˆDCM^( 2 góc t/ư)

mà 2 góc này ở vị trí so l trong nên AB // CD.

c) Nối B với D.

Xét tgAMC và tgDMB có:

AM = DM (gt)

gAMC = gDMB (đđ)

CM = BM (suy từ gt)

=> tgAMC = tgDMB (c.g.c)

=> AC = DB (2 canjht /ư)

Xét tgBAC và tgCDB có:

BA = CD (câu b)

BC chung

AC = DB (c/m trên)

=> tgBAC = tgCDB (c.c.c)

                                                  `~Học tốt!~

14 tháng 12 2021

\(a,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMB}=\widehat{CMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAB=\Delta MDC\left(c.g.c\right)\\ b,\Delta MAB=\Delta MDC\\ \Rightarrow\widehat{MCD}=\widehat{MBA}\)

Mà 2 góc này ở vị trí so le trong nên \(AB\text{//}CD\)

\(c,\left\{{}\begin{matrix}BM=MC\\AM=MD\\\widehat{AMC}=\widehat{BMD}\left(đđ\right)\end{matrix}\right.\Rightarrow\Delta MAC=\Delta MDB\left(c.g.c\right)\\ \Rightarrow AC=BD;\widehat{MCA}=\widehat{MBD}\)

Mà 2 góc này ở vị trí slt nên \(AC\text{//}BD\Rightarrow BD\bot AB\)

\(\left\{{}\begin{matrix}AC=BD\\\widehat{BAC}=\widehat{ABD}=90^0\\AB\text{ chung}\end{matrix}\right.\Rightarrow\Delta ABC=\Delta CDA\left(c.g.c\right)\\ \Rightarrow BC=AD\\ d,MF\bot BD\Rightarrow MF\text{//}AB\\ BC=AD\\ \Rightarrow AM=\dfrac{1}{2}AD=\dfrac{1}{2}BC=BM=MC\\ \Rightarrow\Delta AME\text{ cân tại }E\)

Mà ME là trung tuyến nên cũng là đường cao

Do đó \(ME\bot AC\Rightarrow ME\text{//}AB\)

Mà \(MF\text{//}AB\Rightarrow ME\equiv MF\)

Vậy M,E,F thẳng hàng

22 tháng 4 2017

c/ Ta có tính chất: Trong 1 tam giác vuông, trung tuyến của góc vuông đến cạnh đối diện (cạnh huyền) sẽ bằng 1/2 cạnh huyền.

Xét tam giác vuông ABC, có trung tuyến AM, vậy AM=CM (=1/2 BC) => Tam giác ACM cân ( 2 cạnh bên bằng nhau) => ^ MCA=^MAC

Xét tam giác DMB và tam giác CMA

Có: CM=MB ( M trugn điểm)

      DM=AM ( gt)

      ^DMB=^CMA (đđ)

Vậy hai tam giác =nhau =>^BDM=^MAC và ^DBM=^

B suy tiếp nhé!

22 tháng 4 2017

Bạn tự vẽ hình nha!

Xét tam giác ABC vuông tại A, có: \(BC^2=AB^2+AC^2\)

                                                \(225=81+AC^2\)

                                                 \(\Rightarrow AC^2=144\)

                                                \(\Rightarrow AC=12\left(cm\right)\)

Xét tam giác MAB và tam giác MDC:

Có: DM=AM (gt)

      CM=MB (AM trung tuyến)

      Góc DMC=Góc AMB (đđ)

Vậy tam giác MAB= tam giác MDC (C.G.C)

tự vẽ hình nha

a)

vì M là trung điểm của BC

=> AM=MB=MC

xét tam giác MAC và tam giác MDB có:

MA=MD(gt)

\(\widehat{BMD}=\widehat{AMC}\)(đối đỉnh)

MB=MC(gt)

=> tam giác MAC=tam giác MDB (c.g.c)

b) tương tự đối với tam giác MAB và tam giác DCB

=>tam giác MAB=tam giác DCB (c.g.c)

c)xét tam giác ABC và tam giác DCB có:

BC cạnh chung

BA=DC( vì tam giác BMA=tam giác DMC)

BD=AC(vì tam giác MAC=tam giác MDB)

=> tam giác ABC=tam giác DCB (c.c.c)

d) (lớp 8 học) 

xét tứ giác ABDC có:

 BD=AC, BA=DC

=> ABDC là hình bình hành (1)

mà \(\widehat{A}=90^0\) (2)

=>ABDC là hình chữ nhật

=> \(\widehat{C}=90^0\)

xét tam giác BAN và tam giác CDN có

DC=BA(cm trên)

\(\widehat{A}=\widehat{C}=90^0\)

AN=NC (gt)

=>tam giác BAN=tam giác CDN (cgv-cgv)

=> BN=ND (đpcm)

e)

ta có MA=MC

=> MAC là tam giác cân tại M

=> \(\widehat{MAC}=\widehat{MCA}\)

xét tam giác AKN và tam giác CIN có:

\(\widehat{MAC}=\widehat{MCA}\)(cm trên)

AN=NC (gt)

\(\widehat{BNA}=\widehat{DNC}\)(vì tam giác BAN=tam giác DCN)

=> tam giác AKN=tam giác CIN (g.c.g)

=> NI=NK(cạnh tương ứng) (đpcm)

chúc bn học tốt

7 tháng 12 2019

Thanks bạn nha!!!

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân. Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của...
Đọc tiếp

Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.

Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.

Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC

4
1 tháng 5 2020

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

1 tháng 5 2020

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

17 tháng 4 2019

đề bài sai nhé, bn xem lại câu a

17 tháng 4 2019

Mình ghi nhầm: 

a) Chứng minh: tam giác MAB= tam giác MDC. Suy ra góc ACD vuông

b) Gọi K là trung điểm của AC. Chứng minh: KB=KD

c) KD cắt BC tại I. KB cắt AD tại N. Chứng minh : tam giác KNI cân