K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABM và ΔCDM có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>DC\(\perp\)AC

mà AC\(\perp\)AB

nên AB//DC

c: ΔMAB=ΔMCD

=>AB=CD

Xét ΔKAB và ΔKEC có

KA=KE

\(\widehat{AKB}=\widehat{EKC}\)

KB=KC

Do đó: ΔKAB=ΔKEC

=>AB=EC 

ΔKAB=ΔKEC

=>\(\widehat{KAB}=\widehat{KEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//EC

AB//EC

AB//CD

CD,EC có điểm chung là C

Do đó: E,C,D thẳng hàng

AB=EC

AB=CD

Do đó: EC=CD

Ta có: E,C,D thẳng hàng

EC=CD

Do đó: C là trung điểm của ED

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB=CD và AB//CD

=>AC vuông góc CD

b: ABCD là hình bình hành

=>AD//BC và AD=BC

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

a: 2BM=BD

Xét tứ giác ABCD có 

M là trung điểm của BD

M là trung điểm của AC

Do đó: ABCD là hình bình hành

Suy ra: AB=CD

Xét ΔBCD có BD<BC+CD

=>AB+BC>2BM

b: Ta có: \(\widehat{ABM}=\widehat{CDM}\)

mà \(\widehat{CDM}>\widehat{CBM}\)

nên \(\widehat{ABM}>\widehat{CBM}\)

25 tháng 11 2023

loading... a) Xét ∆ABM và ∆CDM có:

AM = CM (gt)

AMB = CMD (đối đỉnh)

BM = DM (gt)

⇒ ∆ABM = ∆CDM (c-g-c)

b) Do ∆ABM = ∆CDM (cmt)

⇒ MAB = MCD (hai góc tương ứng)

⇒ MCD = 90⁰

⇒ MC ⊥ CD

⇒ AC ⊥ CD

17 tháng 12 2022

a: Xét ΔABM và ΔCDM có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔABM=ΔCDM

b: ΔABM=ΔCDM

nên AB=CD và góc ABM=góc CDM

=>AB//CD

=>CE vuông góc với AC

=>AC vuông góc DE

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB=CD và CD//AB

=>DC vuông góc AC

b: AB+BC=CD+BC>DB=2BM

c: Xet ΔABD và ΔCDB có

AB=CD

BD chung

AD=CB

=>ΔABD=ΔCDB

21 tháng 4 2023

Phần d đâu r bạn ????

25 tháng 8 2021

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD

EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU

6 tháng 2 2022

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD

8 tháng 7 2019

A B C M

CM :

a) Áp dụng định lí Pi - ta - go vào t/giác ABC vuông tại A, ta có:

BC2 = AB2 +  AC2

=> AB2 = BC2 - AC2 = 102 - 82 = 100 - 64 = 36

=> AB = 6 (cm)

b) Xét t/giác ABM và t/giác CDM

có: BM = MD (gt)

   \(\widehat{AMB}=\widehat{CMD}\) (đối đỉnh)

  AM = CM (gt)

=> t/giác ABM = t/giác CDM (c.g.c)

=> AB = CD (2 cạnh t/ứng)

=> \(\widehat{A}=\widehat{C}\) (2 góc t/ứng)

Mà \(\widehat{A}=90^0\) => \(\widehat{C}=90^0\) => AC \(\perp\)CD

c) Xét t/giác ACD

 Ta có: BC + CD > BD (bất đẳng thức t/giác)

Mà CD = AB và 2BM = BD (vì BD = BM + MD và BM = MD)

=> AB + BC > 2BM

d) Ta có: AB < BC (6 cm < 10cm)

Mà AB = CD

=> CD > BC =>  \(\widehat{MBC}< \widehat{D}\) (quan hệ giữa cạnh và góc đối diện)

Mà \(\widehat{D}=\widehat{ABM}\) (vì t/giác ABM = t/giác CDM)

=> \(\widehat{CBM}< \widehat{ABM}\)

8 tháng 3 2023

Cho tam giác ABC vuông tại A có AB<AC,đường trung tuyến AM. Trên tia đối của tia AM lấy điểm D sao cho M là trung điểm AD.

a) chứng minh tam giác MAB= tam giác MDC và DC song song với AB

b) gọi K là trung điểm AC. Chứng minh tam giác BKD cân 

c) DK cắt BC tại O. Chứng minh CO=2/3CM

d) BK cắt AD tại N. Chứng minh MK vuông góc với NO