Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB=CD
a: Xét tứ giác ABCD có
m là trung điểm chung của AC và BD
=>ABCD là hình bình hành
=>AD//BC
b: ABCD là hình bình hành
=>AB//CD
=>CD vuông góc AC
c: Xét tứ giác ABNC có
AB//NC
AC//BN
=>ABNC là hình bình hành
=>BN=AC; AB=NC
Xét ΔBAM vuông tại A và ΔNCM vuông tại C có
MA=MC
BA=CN
=>ΔBAM=ΔNCM
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
a: Xét ΔMAD và ΔMCB có
MA=MC
\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)
MD=MB
Do đó: ΔMAD=ΔMCB
=>AD=BC
b: Xét ΔMAB và ΔMCD có
MA=MC
\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)
MB=MD
Do đó: ΔMAB=ΔMCD
=>\(\widehat{MAB}=\widehat{MCD}=90^0\)
=>CD\(\perp\)CA
c: Xét tứ giác ABNC có
AB//NC
AC//BN
Do đó: ABNC là hình bình hành
=>AB=CN
Xét ΔABM vuông tại A và ΔCNM vuông tại C có
AB=CN
AM=CM
Do đó: ΔABM=ΔCNM
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD
EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU
TL:
1) Xét tam giác ABM và tam giác CDM có:
- AM = CM
- Góc AMB = góc CMD (2 góc đối đỉnh)
- BM = DM
-> Tam giác ABM = tam giác CDM (c.g.c)
2) Vì tam giác ABM = tam giác CDM
-> Góc MAB = góc MCD = 90o
-> MC vuông góc vs CD hay AC vuông góc vs DC
3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:
- M là trung điểm của AC (giả thiết)
- MF//DC (cmt)
Nên MF là đường trung trực của tam giác ACD
-> F là trung điểm của AD
bạn tự vẽ hình nha
a) xét tg ABM và tg CDM có
MA=MC(M là trung điểm AC )
\(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )
MB=MD(gt)
\(\Rightarrow\)tg ABM=tg CDM (c-g-c)
b) bạn xem lại đề bài nha mik nghĩ là đề sai
c) ta có MB=MD,MA=MC(gt)
mà M lại là trung điểm của BD,AC
\(\Rightarrow\)ABCD là hình chữ nhật
có E là trung diểm BC
mà EM cắt AD tại F
\(\Rightarrow F\)là trung điểm AD (dpcm)
P/s : sửa đề : MB = MD
a) Xét tam giác ABM và tam giác CDM có :
AM = CM ( vì M là trung điểm của AC )
Góc AMB = góc CMD ( 2 góc đối đỉnh )
MB = MD ( GT )
=> tam giác ABM = tam giác CDM ( c - g - c )
b) Theo chứng minh trên , ta có : tam giác ABM = tam giác CDM
=> Góc BAM = Góc MCD ( 2 góc tương ứng )
Mà góc BAM = 90o ( Tam giác ABC vuông tại A )
=> Góc MCD = 90o
=> AC vuông góc với DC tại C
c) +) Xét tam giác ABC có :
E là trung điểm của BC ( GT )
M là trung điểm của AC ( GT )
=> EM là đường trung bình của tam giác ABC
=> EM // AB ( tính chất )
Mà AB // CD ( do AC \(\perp\)CD ; AC \(\perp\) AB )
=> EM // CD hay MF // CD
+) Xet tam giác ACD có :
M là trung điểm của AC
MF // CD
=> F là trung điểm của AD ( điều phải chứng mình )
a: Xét tứ giác ABCD có
M là trung điểm chung của AC và BD
=>ABCD là hbh
=>AB=CD và AB//CD
b: AB//CD
AB vuông góc AC
=>CD vuông góc AC
c: ABCD là hbh
=>BC//AD