K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

a: Xét tứ giác ABCD có 

M là trung điểm của AC

M là trung điểm của BD

Do đó: ABCD là hình bình hành

Suy ra: AB=CD

a: Xét tứ giác ABCD có

m là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC

b: ABCD là hình bình hành

=>AB//CD
=>CD vuông góc AC

c: Xét tứ giác ABNC có

AB//NC

AC//BN

=>ABNC là hình bình hành

=>BN=AC; AB=NC

Xét ΔBAM vuông tại A và ΔNCM vuông tại C có

MA=MC

BA=CN

=>ΔBAM=ΔNCM

15 tháng 12 2017
nhanh giùm với
16 tháng 12 2017

(Bạn tự vẽ hình giùm)

a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)

DM = BM (gt)

=> \(\Delta ADM\)\(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)

b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)

\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)

BM = DM (gt)

=> \(\Delta ABM\)\(\Delta CDM\)(c. g. c)

=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)

=> AC _|_ CD (đpcm)

Đề sai rồi bạn

14 tháng 12 2023

a: Xét ΔMAD và ΔMCB có

MA=MC

\(\widehat{AMD}=\widehat{CMB}\)(hai góc đối đỉnh)

MD=MB

Do đó: ΔMAD=ΔMCB

=>AD=BC

b: Xét ΔMAB và ΔMCD có

MA=MC

\(\widehat{AMB}=\widehat{CMD}\)(hai góc đối đỉnh)

MB=MD

Do đó: ΔMAB=ΔMCD

=>\(\widehat{MAB}=\widehat{MCD}=90^0\)

=>CD\(\perp\)CA

c: Xét tứ giác ABNC có

AB//NC

AC//BN

Do đó: ABNC là hình bình hành

=>AB=CN

Xét ΔABM vuông tại A và ΔCNM vuông tại C có

AB=CN

AM=CM

Do đó: ΔABM=ΔCNM

15 tháng 12 2023

C.ơn

25 tháng 8 2021

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD

EM RẢNH NÊN EM MỚI TL CHỨ LÂU NHƯ NÀY EM KO RẢNH CHẮC KO TL ĐÂU

6 tháng 2 2022

TL:

1) Xét tam giác ABM và tam giác CDM có:

- AM = CM

- Góc AMB = góc CMD (2 góc đối đỉnh)

- BM = DM

-> Tam giác ABM = tam giác CDM (c.g.c)

2) Vì tam giác ABM = tam giác CDM 

-> Góc MAB = góc MCD = 90o

-> MC vuông góc vs CD hay AC vuông góc vs DC 

3) Vì E là trung điểm của BC , M là trung điểm của AC -> EM là đường trung trực của tam giác ABC -> EM//AB mà AB//DC (cùng vuông góc với AC) nên EM//DC hay MF//DC, ta có:

- M là trung điểm của AC (giả thiết)

- MF//DC (cmt)

Nên MF là đường trung trực của tam giác ACD

-> F là trung điểm của AD

26 tháng 11 2019

bạn tự vẽ hình nha 

a) xét tg ABM và tg CDM có 

  MA=MC(M là trung điểm AC )

  \(\widehat{AMB}=\widehat{DMC}\)( đối đỉnh )

  MB=MD(gt)

\(\Rightarrow\)tg ABM=tg CDM (c-g-c)

b) bạn xem lại đề bài nha mik nghĩ là đề sai 

c) ta có MB=MD,MA=MC(gt)

 mà M lại là trung điểm của BD,AC

\(\Rightarrow\)ABCD là hình chữ nhật 

có E là trung diểm BC 

mà EM cắt AD tại F

\(\Rightarrow F\)là trung điểm AD (dpcm)

26 tháng 11 2019

P/s : sửa đề : MB = MD B C E M F D A

a) Xét tam giác ABM và tam giác CDM có : 

AM = CM ( vì M là trung điểm của AC ) 

Góc AMB = góc CMD ( 2 góc đối đỉnh )

MB = MD ( GT )

=> tam giác ABM = tam giác CDM ( c - g - c ) 

b) Theo chứng minh trên , ta có : tam giác ABM = tam giác CDM

=> Góc BAM = Góc MCD ( 2 góc tương ứng )

Mà góc BAM = 90( Tam giác ABC vuông tại A )

=> Góc MCD = 90o

=> AC vuông góc với DC tại C 

c) +) Xét tam giác ABC có :

E là trung điểm của BC ( GT )

M là trung điểm của AC ( GT )

=> EM là đường trung bình của tam giác ABC 

=> EM // AB ( tính chất )

Mà AB // CD ( do AC \(\perp\)CD ; AC \(\perp\) AB )

=> EM // CD hay MF // CD

+) Xet tam giác ACD có :

M là trung điểm của AC

MF // CD

=> F là trung điểm của AD ( điều phải chứng mình )