K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

Xét tam giacs ABE và HBD ta có:

Góc BAE = Góc BHD (=90^0)

Góc ABE = Góc HBD (GT)

=> Tam giacs ABE đồng dạng với tam giác HBD

\(\Rightarrow\dfrac{AB}{HB}=\dfrac{AE}{HD}\)

=> AB.HD = AE.HB

2 tháng 12 2018

a) Ta có BE là phân giác của ∠ABC (gt)

⇒ ∠B1 = ∠B2

Do đó hai tam giác vuông:

b) Ta có:

(định lý Pitago)

Xét hai tam giác vuông AHB và CAB có góc B chung nên :

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(\dfrac{S_{HBA}}{S_{ABC}}=\left(\dfrac{BA}{BC}\right)^2=\dfrac{9}{25}\)

c: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=9.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=7.2\left(cm\right)\)

CH=BC-BH=12,8(cm)

16 tháng 3 2016

(mình k pk kẻ hình bn nhé)

ta có Scbe=1/2*AB*EC=1/2*ED*BC

suy ra AB.EC=BC.DE

4:

a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có

góc ACH chung

=>ΔACH đồng dạng với ΔBCA

b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có

góc HAB=góc HCA

=>ΔHAB đồng dạng với ΔHCA

=>HA/HC=HB/HA

=>HA^2=HB*HC

c: góc EHD=góc EHA+góc DHA

=1/2*góc AHB+1/2*góc AHC=90 độ

góc EAD+góc EHD=180 độ

=>EADH nội tiếp

=>góc AED=góc AHD và góc ADE=góc AHE

mà góc AHD=góc AHE=45 độ

nên góc AED=góc ADE

=>AD=AE

DD
9 tháng 6 2021

d) Dễ thấy \(E\)là trực tâm của tam giác \(ACE\)(do là giao của hai đường cao \(DK,CH\)). 

suy ra \(AE\perp CD\).

Để chứng minh \(BM//CD\)ta sẽ chứng minh \(AE\perp BM\).

Ta có: 

\(\widehat{CAH}=\widehat{CBA}\)(vì cùng phụ với góc \(\widehat{ACB}\))

suy ra \(\widehat{CAE}=\widehat{ABM}\)

mà \(\widehat{CAE}+\widehat{EAB}=\widehat{CAB}=90^o\Rightarrow\widehat{ABM}+\widehat{EAB}=90^o\Rightarrow\widehat{AMB}=90^o\)

do đó \(BM\perp AE\).

Từ đây ta có đpcm.