K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2015

A B C H K I P

Nối H với I

+) Xét tam giác KHC có: I; P là trung điểm KC; HK => IP là đường trung bình của tam giác 

=> IP // HC mà AH | HC nên IP | AH => IP là đường cao của tam giác AHI

+) Xét tam giác AHI có:  HK; IP là 2 đường cao của tam giác ; HK cắt IP tại P

=> P là trực tâm của tam giác => AP là đường cao thứ ba => AP | HI  (1)

+) Xét tam giác BCK có: I; H là trung điểm của KC; BC => IH là đường trung bình của tam giác 

=> IH // BK  (2)

(1)(2) => AP | BK 

17 tháng 10 2015

Khó thế, mình mới lớp 5 thôi

14 tháng 10 2015

thiếu đề

a: Xét ΔABC có

M là trung điểm của BA
N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

=>MN=BE và MN//BE

=>BMNE là hình bình hành

b: Ta có: ΔAHB vuông tại H

mà HM là đường trung tuyến

nên HM=AM

=>M nằm trên đường trung trực của AH(1)

Ta có: ΔAHC vuông tại H

mà HN là đường trung tuyến

nên HN=AC/2=AN

=>N nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra MN là đường trung trực của AH

Xét ΔABC có 

M là trung điểm của AB

E là trung điểm của BC

Do đó: ME là đường trung bình

=>ME=AC/2

mà HN=AC/2

nên ME=HN

Xét tứ giác MNEH có MN//EH

nên MNEH là hình thang

mà ME=NH

nên MNEH là hình thang cân

23 tháng 7 2021
Trên KC lấy điểm M sao cho MC = MK.Nối M với H. Xét tam giác KHC có: I,M lần lượt là trung điểm của HK, KC =>MI là đường trung bình của tam giác =>IP//HC mà AH vuông góc với HC(gt) nên IM là hai đường cao của của tam giác AHM. Xét tam giác AHM có: HK, IP là hai đường cao của tam giác; HK cắt IM tại I => I là trực tâm tam giác => AI là đường cao ứng với cạnh HM.=> AI vuông góc với HM(1). Xét tam giác BCK có: M,H lần lượt là trung điểm của KC,BC => MH là đường trung bình của tam giác =>MH song song với BK(2). Từ (1)và(2)=>AI vuông góc với BK(đpcm)
31 tháng 7 2019

Bài 2:

A C D B E H K

Dễ dàng chứng minh \(\Delta\)BEC = \(\Delta\)AEH (c.g.c) và \(\Delta\)CDB = \(\Delta\)ADK

Suy ra HA = BC. và KA = BC từ đó suy ra HA = KA (1)

Do ED là đường trung bình tam giác BAK nên ED // AK (2)

Do ED là đường trung bình tam giác HCA nên ED // AH (3)

Từ (2) và (3) theo tiên đề Ơclit suy ra A, H, K thẳng hàng (4)

Từ (1) và (4) suy ra đpcm.

31 tháng 7 2019

Bài 1:

A B C M K H

Hình như hơi dư thừa nhỉ? BHCK là hình bình hành thì hiển nhiên CH//BK rồi mà. Đúng hay sai thì tùy!

Giải

Dễ dàng chứng minh \(\Delta\)BMH = \(\Delta\)CMK (cạnh huyền - góc nhọn)

Suy ra ^MBH = ^MCK. Mà hai góc này ở vị trị so le trong nên BH // CK (1) và MH = MK 

Xét \(\Delta\)BMK và \(\Delta\)CMH có:

MH = MK (chứng minh trên)

^BMK = ^HMC

BM = CM (do M là trung điểm BC)

Suy ra  \(\Delta\)BMK = \(\Delta\)CMH (c.g.c)

Suy ra ^MBK = ^MCH. Mà hai góc này ở vị trí so le trong nên BK // CH (2)

Từ (1) và (2) suy ra tứ giác BHCK là hình bình hành (đpcm)