Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
BD là phân giác
=>DA/AB=DC/BC
=>DA/3=DC/5=(DA+DC)/(3+5)=8/8=1
=>DA=3cm; DC=5cm
b: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc ABC chung
=>ΔABC đồng dạng với ΔHBA
=>BA/BH=BC/BA
=>BA^2=BH*BC
c: IH/IA=BH/BA
AD/DC=BA/BC
BH/AB=BA/BC
=>IH/IA=AD/DC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
Xét ΔHAC vuông tại H và ΔABC vuông tại A có
góc C chung
=>ΔHAC đồng dạng với ΔABC
=>ΔHBA đồng dạng với ΔHAC
b: BC=căn 6^2+8^2=10cm
AH=6*8/10=4,8cm
d: ΔHBA đồng dạng với ΔHAC
=>HB/HA=HA/HC
=>HA^2=HB*HC
a) Xét ΔABH có BI là đường cao ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{BA}{BH}\)(Tính chất tia phân giác của tam giác)(1)
Xét ΔAHB vuông tại H và ΔCHA vuông tại H có
\(\widehat{BAH}=\widehat{ACH}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔAHB\(\sim\)ΔCHA(g-g)
Suy ra: \(\dfrac{AH}{CH}=\dfrac{AB}{AC}=\dfrac{HB}{HA}\)(Các cặp cạnh tương ứng tỉ lệ)
\(\Leftrightarrow\dfrac{AB}{HB}=\dfrac{AC}{HA}\)(2)
Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(đpcm)
a) Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABH}\) chung
Do đó: ΔABC\(\sim\)ΔHBA(g-g)
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)(Các cặp cạnh tuong ứng tỉ lệ)
hay \(AB^2=BH\cdot BC\)(đpcm)
b) Xét ΔCHA vuông tại H và ΔAHB vuông tại H có
\(\widehat{HAC}=\widehat{HBA}\left(=90^0-\widehat{C}\right)\)
Do đó: ΔCHA\(\sim\)ΔAHB(g-g)
Suy ra: \(\dfrac{CA}{AB}=\dfrac{HA}{HB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(\dfrac{AC}{HA}=\dfrac{AB}{BH}\)(1)
Xét ΔHBA có BI là đường phân giác ứng với cạnh AH(gt)
nên \(\dfrac{IA}{IH}=\dfrac{AB}{BH}\)(2)
Từ (1) và (2) suy ra \(\dfrac{IA}{IH}=\dfrac{AC}{HA}\)(3)
c) Xét ΔAHC có AK là đường phân giác ứng với cạnh CH(gt)
nên \(\dfrac{CK}{KH}=\dfrac{AC}{HA}\)(4)
Từ (3) và (4) suy ra \(\dfrac{CK}{KH}=\dfrac{AI}{IH}\)
hay KI//AC(Định lí Ta lét đảo)
a: CB=10cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=8/8=1
=>AD=3cm; CD=5cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>BA^2=BH*BC
c: Xét ΔBAD vuông tại A và ΔBHI vuông tại H có
góc ABD=góc HBI
=>ΔBAD đồng dạng với ΔBHI
=>BA/BH=BD/BI
=>BA/BD=BH/BI
=>BA/BH=BD/BI=BC/BA
=>ΔBDC đồng dạng với ΔBIA
a)Có tg ABC vuông tại a
áp dụng đl pytago ta có:
\(BC^2=AB^2+AC^2=6^2+8^2=100\\ \Rightarrow BC=10\left(cm\right)\)
Có BD là đg phân giác tg ABC
\(\Rightarrow\dfrac{AD}{DC}=\dfrac{AB}{BC}=\dfrac{6}{10}=\dfrac{3}{5}\left(1\right)\)
lai co: AD+DC=AC=8
=>AD=8-DC
thay vao 1
\(\Rightarrow\dfrac{8-DC}{DC}=\dfrac{3}{5}\)
\(\Leftrightarrow DC=5\\ \Rightarrow AD=3\)
b) xét tg ABC và tg HBA có:
+góc BAH = AHB(=90 độ)
+góc B chung
=> tg ABC đồng dạng tg HBA (gg) (đpcm)
\(\Rightarrow\dfrac{AB}{HB}=\dfrac{BC}{BA}\\ \Leftrightarrow AB^2=HB.BC\left(dpcm\right)\)
c) có: + góc C =\(90^o-\widehat{B}\) (goc A = 90 do)
+ \(\widehat{BAH}=90^o-\widehat{B}\) (goc AHB =90do)
=> goc BAH = goc C
xet tg ABI va tg CBD co
+goc BAH =goc C
+ goc ABI = goc DBC (BD la phan giac)
=> tg ABI va tg CBD dong dang (g.g) (dpcm)