K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2023

Xét ΔHAB vuông tại H có HE là đường cao

nên \(AE\cdot AB=AH^2\)

Xét ΔHAC vuông tại H có HF là đường cao

nên \(AF\cdot AC=AH^2\)

\(S_{AEF}=\dfrac{1}{16}\cdot S_{ABC}\)

=>\(\dfrac{1}{2}\cdot AE\cdot AF=\dfrac{1}{16}\cdot\dfrac{1}{2}\cdot AB\cdot AC\)

=>\(AE\cdot AF=\dfrac{1}{16}\cdot AB\cdot AC\)

=>\(\dfrac{AH^2}{AB}\cdot\dfrac{AH^2}{AC}=\dfrac{1}{16}\cdot AB\cdot AC\)

=>\(AH^4=\dfrac{1}{16}\cdot AB^2\cdot AC^2\)

=>\(AH^2=\dfrac{1}{4}\cdot AB\cdot AC=\dfrac{1}{4}\cdot AH\cdot BC\)

=>\(AH=\dfrac{1}{4}\cdot BC\)

Gọi M là trung điểm của BC

=>AH vuông góc HM tại H

ΔABC vuông tại A

mà AM là đường trung tuyến

nên \(AM=\dfrac{1}{2}BC\)=MB=MC

=>\(\dfrac{AH}{AM}=\dfrac{1}{2}\) và ΔMAC cân tại M

Xét ΔAHM vuông tại H có

\(sinAMH=\dfrac{AH}{AM}=\dfrac{1}{2}\)

=>\(\widehat{AMB}=30^0\)

=>\(\widehat{AMC}=150^0\)

ΔMAC cân tại M

=>\(\widehat{MCA}=\dfrac{180^0-\widehat{AMC}}{2}=15^0\)

=>\(\widehat{ACB}=15^0\)

23 tháng 10 2021

a, Áp dụng HTL: \(BC=\dfrac{AB^2}{BH}=18\left(cm\right)\)

Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=9\sqrt{3}\left(cm\right)\)

Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot9\sqrt{3}}{18}=\dfrac{9\sqrt{3}}{2}\left(cm\right)\)

b, Áp dụng HTL: \(\left\{{}\begin{matrix}AB\cdot AE=AH^2\\AC\cdot AF=AH^2\end{matrix}\right.\Rightarrow AB\cdot AE=AC\cdot AF\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Mà góc A chung nên \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)

Do đó \(\widehat{AEF}=\widehat{ACB}\)

AC=căn 10^2-8^2=6cm

AH=6*8/10=4,8cm

AE=AH^2/AB=4,8^2/8=2,88cm

AF=AH^2/AC=4,8^2/6=3,84cm

S AEF=1/2*2,88*3,84=5,5296cm2

S ABC=1/2*6*8=24cm2

=>S BEFC=24-5,5296=18,4704cm2

22 tháng 9 2017

Tương tự, HS tự làm

1 tháng 7 2022

a)Áp dụng HTL2 vào tam giác ABC cuông tại A, đường cao AH ta có:

AH2=BH.HC=9.16=144

<=>AH=√144=12((cm)

Áp dụng định lý Pytago vào tam giác vuông BHA ta có:

BA2=AH2+BH2=122+92=225

<=>BA=√225=15(cm)

Áp dụng định lý Pytago vào tam giác vuông CHA ta có:

CA2=AH2+CH2=122+162=20(cm)

Vậy AB=15cm,AC=20cm,AH=12cm

a: CH=6cm

\(AB=\sqrt{BH\cdot BC}=4\left(cm\right)\)

\(\widehat{C}=30^0\)

7 tháng 10 2021

\(a,BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\left(pytago\right)\)

\(b,\) Áp dụng HTL: \(AH\cdot BC=AB\cdot AC\Leftrightarrow AH=\dfrac{9\cdot12}{15}=7,2\left(cm\right)\)

\(c,\) Dễ thấy AEHF là hcn

Do đó \(\widehat{HAF}=\widehat{EFA}\)

Mà \(\widehat{HAF}=\widehat{HBA}\left(cùng.phụ.\widehat{HAB}\right)\)

Do đó \(\widehat{EFA}=\widehat{HBA}\)

Ta có \(\left\{{}\begin{matrix}\widehat{HBA}=\widehat{EFA}\\\widehat{BAC}.chung\end{matrix}\right.\Rightarrow\Delta AEF\sim\Delta ACB\left(g.g\right)\)

\(\Rightarrow\dfrac{AE}{AC}=\dfrac{AF}{AB}\Rightarrow AE\cdot AB=AF\cdot AC\)

\(d,\) Áp dụng HTL: \(\left\{{}\begin{matrix}AH^2=EA\cdot AB\\AH^2=FA\cdot AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AE=\dfrac{AH^2}{AB}=5,76\left(cm\right)\\AF=\dfrac{AH^2}{AC}=4,32\left(cm\right)\end{matrix}\right.\)

\(\Rightarrow S_{AEF}=\dfrac{1}{2}AE\cdot AF=\dfrac{1}{2}\cdot5,76\cdot4,32=12,4416\left(cm^2\right)\)

Mà \(S_{ABC}=\dfrac{1}{2}AB\cdot AC=54\left(cm^2\right)\)

Vậy \(S_{BEFC}=S_{ABC}-S_{AEF}54-12,4416=41,5584\left(cm^2\right)\)