Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=BH+CH
=4+9
=13(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(AH^2=4\cdot9=36\)
=>\(AH=\sqrt{36}=6\left(cm\right)\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
=>\(AB^2=4\cdot13=52\)
=>\(AB=\sqrt{52}=2\sqrt{13}\left(cm\right)\)
b:
CK//AB
CA\(\perp\)AB
Do đó: CK\(\perp\)CA tại C
Xét ΔACK vuông tại C có CH là đường cao
nên \(HA\cdot HK=CH^2\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(CH\cdot HB=HA^2\)
Xét ΔAHC vuông tại H có \(AC^2=CH^2+HA^2\)
=>\(AC^2=HA\cdot HK+CH\cdot HB\)
c: Gọi M là trung điểm của BC
Ta có: ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
=>ΔABC nội tiếp (M)
Xét tứ giác BAEF có
\(\widehat{BFE}+\widehat{BAE}=90^0+90^0=180^0\)
Do đó: BAEF là tứ giác nội tiếp
=>\(\widehat{BAF}=\widehat{BEF}\)(1)
Ta có: AH\(\perp\)BC
EF\(\perp\)BC
Do đó: AH//EF
=>AD//EF
=>\(\widehat{ADB}=\widehat{BEF}\)(hai góc so le trong)(2)
Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
=>CA=CD
Xét ΔBAD có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAD cân tại B
=>\(\widehat{BAD}=\widehat{BDA}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{BAD}=\widehat{BAF}\)
mà \(\widehat{BAD}=\widehat{ACB}\left(=90^0-\widehat{ABC}\right)\)
nên \(\widehat{BAF}=\widehat{ACB}\)
Ta có: MA=MB
=>ΔMAB cân tại M
=>\(\widehat{MAB}=\widehat{MBA}\)
=>\(\widehat{MAB}=\widehat{ABC}\)
Ta có: \(\widehat{MAF}=\widehat{MAB}+\widehat{BAF}\)
\(=\widehat{ABC}+\widehat{ACB}\)
\(=90^0\)
=>MA\(\perp\)FA tại A
Xét (M) có
MA là bán kính
FA\(\perp\)MA tại A
Do đó: FA là tiếp tuyến của (M)
hay FA là tiếp tuyến của đường tròn đường kính BC
a, Vì CM là tiếp tuyến của (A)
=> \(CM\perp AM\)
=> ^CMA = 90o
=> M thuộc đường tròn đường kính AC
Vì ^CHA = 90o
=> H thuộc đường tròn đường kính AC
Do đó : M và H cùng thuộc đường tròn đường kính AC
hay 4 điểm A,C,M,H cùng thuộc đường tròn đường kính AC
b, Vì AM = AH ( Bán kính)
CM = CH (tiếp tuyến)
=> AC là trung trực MH
=> \(AC\perp MH\)tại I
Xét \(\Delta\)AMC vuông tại M có MI là đường cao
\(\Rightarrow MA^2=AI.AC\)(Hệ thức lượng)
c, Vì CM , CH là tiếp tuyến của (A)
=> AC là phân giác ^HAM
=> ^HAC = ^MAC
Mà ^HAC + ^HAB = 90o
=> ^MAC + ^HAB = 90o
Ta có: ^BAD + ^BAC + ^CAM = 180o (Kề bù)
=> ^BAD + 90o + ^CAM = 180o
=> ^BAD + ^CAM = 90o
Do đó ^BAD = ^BAH (Cùng phụ ^CAM)
Xét \(\Delta\)BAD và \(\Delta\)BAH có:
AB chung
^BAD = ^BAH (cmt)
AD = AH (Bán kính (A) )
=> \(\Delta BAD=\Delta BAH\left(c.g.c\right)\)
=> ^ADB = ^AHB = 90o
\(\Rightarrow BD\perp AD\)
=> BD là tiếp tuyến của (A)
Làm đc đến đây thôi :(
Tam giác EBF cân tại B nên HE = HF
Tam giác AEF vuông tại A có AH là đường trung tuyến ứng với cạnh huyền nên: HA = HE = HF = (1/2).EF (tính chất tam giác vuông)
Vậy tam giác AHF cân tại H.
Gọi I là giao điểm của AD và BC
Vì BC là đường trung trực của AD nên theo tính chất đường trung trực ta có:
BA = BD
Tam giác BAD cân tại B có BI ⊥ AD nên BI là tia phân giác của góc ABD
Tam giác EBF có BH là tia phân giác của góc EBF và BH ⊥ EF nên tam giác EBF cân tại B.
câu c nhìn dài vậy thôi chứ cũng bình thường à, tại mấy chỗ tẩy xóa với xuống dòng ^^!