Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Đáp án B
Áp dụng hệ thức về cạnh và đường cao trong tam giác vuông ta có:
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
AB^2=BH.BC
<=>20^2=BH.(BH + 9)
<=>BH^2 + 9BH-400=0
=> BH=16cm
Mà BC=BH + HC=16 + 9=25cm
AH^2 = BH.HC = 16.9 = 12^2
suy ra AH = 12cm
Vậy diện tích tam giác ABC là:
(AH.BC):2 = (12 . 25) : 2 = 150 cm^2
Tam giác ABC vuông tại A , theo HTL
AH^2 = HB.CH
=> 12^2 = 9.CH => CH = 144 : 9 = 16
=> BC = BH + CH = 9 + 16 = 25
=> Sabc = 1/2 BC.AH = 1/2.12.25 = 150 cm^2
cho tam giác vuông ABC vuông tại A sao cho đường cao AH biết AB= 3 cm , AC = 4 cm , tính BC AH BH CH
Áp dụng định lý Pytago vào tam giác ABC(góc A=90) có:
BC2=AB2+AC2
<=>BC2=32+42
<=>BC2=25
<=>BC=5(cm)
Áp dụng HTL vào tam giác ABC vuông tại A có đường cao AH được:
AB.AC=BC.AH
<=>3.4=5.AH
<=> AH=\(\dfrac{3.4}{5}\)
<=>AH=2,4(cm)
Áp dụng định lý Pytago vào tam giác AHB vuông tại H có:
AB2=AH2+BH2
<=>BH2=32-2,42
<=>BH2=3,24
<=>BH=1,8(cm)
Ta có:BC=BH+CH
=>CH=BC-BH=5-1,8=3,2(cm)
Vậy BC=5cm;AH=2,4cm;BH=1,8cm;CH=3,2cm
Xét tam giác AHB vuông tại H ta có:
AH^2 = AB^2 - BH^2
=> AH^2 = 36 - 12,96 = 23,04
=> AH = 4,8 (cm)
Gọi độ dài CH là x (cm), AC là y (cm)
Xét tam giác AHC vuông tại H, ta có:
y^2 = x^2 + 4,8^2 = x^2 + 23,04 (1)
Xét tam giác ABC vuông tại A ta có:
y^2 = (3,6 + x)^2 - 6^2 = 12,96 + 7,2x + x^2 - 36 = x^2 + 7,2x - 23,04 (2)
(1),(2) => x^2 + 7,2x - 23,04 = x^2 +23,04
=> 7,2x = 46,08
=> x = 6,4 (cm)
Hay CH = 6,4 cm
=> y = 8 (cm)
Hay AC = 8 cm
BC = BH + CH = 3,6 + 6,4 = 10 (cm)
Vậy BC = 10 cm; AH = 4,8cm; CH = 6,4 cm; AC = 8 cm
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2=AH^2+HB^2\)
\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)
hay AH=4,8(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=6,4\left(cm\right)\)
\(\Leftrightarrow BC=10\left(cm\right)\)
hay AC=8(cm)
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Cho tam giác ABC vuông tại A có đường cao AH biết AB = 6 cm BC = 12 cm Tính độ dài đoạn thẳng BH, CH
Lời giải:
Áp dụng công thức hệ thức lượng trong tam giác vuông ta có:
$AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{6^2}{12}=3$ (cm)
$CH=BC-BH=12-3=9$ (cm)
Giải
- Áp dụng 1 số hệ thức về cạnh và đường cao trong Δ vuông ABC ta có :
\(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{12^2}{9}=16\left(cm\right)\)
\(\Rightarrow BC=16+9=25\left(cm\right)\)
- Áp dụng định lý Pytago trong \(\Delta AHC\perp H\) ta có :
\(AC=\sqrt{12^2+16^2}=20\left(cm\right)\)
\(\Rightarrow AB=\sqrt{25^2-20^2}=15\left(cm\right)\)
- Áp dụng tỉ số lượng giác của góc nhọn trong Δ vuông \(ABC\) ta có :
+ \(\tan C=\dfrac{AB}{AC}=\dfrac{15}{20}=\dfrac{3}{4}\)
\(\Rightarrow\) Góc \(C\approx37\) độ
\(\Rightarrow\) Góc CAH = Góc B = 53 độ
\(\Rightarrow\) Góc BAH = 37 độ