Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta thấy: \(\Delta\)ABC cân tại A có AD vuông góc BC => AD là trung trực của BC
Xét tứ giác ABDC: AD là trung trực của BC; BC là trung trực của AD
=> Tứ giác ABDC là hình thoi => AC//BD hay AC//DF => ^ACE=^DFC (So le trong)
Xét \(\Delta\)ACE và \(\Delta\)DFC: ^ACE=^DFC; ^EAC=^CDF (Vì tứ giác ABDC là h.thoi)
=> \(\Delta\)ACE ~ \(\Delta\)DFC (g.g) => \(\frac{AE}{DC}=\frac{AC}{DF}\)(*)
Lại có: Hình thoi ABDC có ^BAC=1200 => ^BAD=^CAD=600 => \(\Delta\)ABD là tam giác đều.
=> AB=BD=AD=AC=CD, thay DC=AC=AD vào (*) ta được: \(\frac{AE}{AD}=\frac{AD}{DF}\)
Xét \(\Delta\)EAD và \(\Delta\)ADF: \(\frac{AE}{AD}=\frac{AD}{DF};\)^EAD=^ADF (Do tam giác BAD đều)
=> \(\Delta\)EAD ~ \(\Delta\)ADF (c.g.c).
b) \(\Delta\)EAD ~ \(\Delta\)ADF (cmt) => ^AED=^DAF.
Dễ thấy ^AED là góc ngoài tam giác AEM => ^AED = ^EAM + ^EMA
^DAF = ^DAB + ^EAM
Do đó ^DAB + ^EAM = ^EAM + ^EMA => ^DAB = ^EMA.
Mà ^DAB=600 => ^EMA=600 hay ^AMD=600.
Xét tứ giác ADBM: ^AMD=^ABD=600 => Tứ giác ADBM nội tiếp đường tròn.
c) Tứ giác ADBM nội tiếp đường tròn => Điểm M nằm trên đường tròn ngoại tiếp \(\Delta\)ABD (1)
Do \(\Delta\)ABD cố định => Đường tròn ngoại tiếp \(\Delta\)ABD cố định. (2)
Từ (1) và (2) => Điểm M di động trên đường tròn ngoại tiếp cố định của \(\Delta\)ABD.
Vậy khi điểm E di động trên AB thì điểm M luôn di động trên cung nhỏ AB của đường tròn ngoại tiếp \(\Delta\)ABD cố định.
a) Xét tứ giác AKIB có
\(\widehat{AKB}=\widehat{AIB}\left(=90^0\right)\)
\(\widehat{AKB}\) và \(\widehat{AIB}\) là hai góc cùng nhìn cạnh AB
Do đó: AKIB là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Ta có:
- Gọi M là trung điểm của AC.
- Vì I là trung điểm của BC nên IM // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Ta có BM = MC (vì M là trung điểm của AC).
- Vì IM // AH và BM = MC nên tam giác IMC và tam giác AHM là hai tam giác đồng dạng.
- Do đó, ta có: ∠IMC = ∠AHM.
- Nhưng ∠IMC = 90° (vì IM vuông góc với BC).
- Vậy, ta có: ∠AHM = 90°.
- Từ đó, ta suy ra AH vuông góc với BC.
b) Ta có:
- Gọi K là điểm đối xứng của H qua I.
- Vì I là trung điểm của BC nên IK // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Vì K là điểm đối xứng của H qua I nên HK = HI.
- Ta có: AH = 2IK (vì I là trung điểm của BC và K là điểm đối xứng của H qua I).
- Vì CK // BD (vì CK và BD đều vuông góc với BC và đi qua điểm H) nên tam giác CKD và tam giác BHD là hai tam giác đồng dạng.
- Do đó, ta có: CK/BD = DK/DH.
- Nhưng CK = BD (vì CK // BD) nên DK = DH.
- Vậy, ta có: DK = DH.
- Từ đó, ta suy ra tam giác ABK vuông.
c) Ta có:
- Gọi N là trung điểm của AB.
- Vì I là trung điểm của BC nên IN // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Ta có: AN = NB (vì N là trung điểm của AB).
- Vì IN // AH và AN = NB nên tam giác INB và tam giác AHM là hai tam giác đồng dạng.
- Do đó, ta có: ∠INB = ∠AHM.
- Nhưng ∠INB = 90° (vì IN vuông góc với AB).
- Vậy, ta có: ∠AHM = 90°.
- Từ đó, ta suy ra AH vuông góc với BM.
- Nhưng BM = MC (vì M là trung điểm của AC).
- Vậy, ta có: AH vuông góc với MC.
- Từ đó, ta suy ra tam giác BEA vuông.
d) Ta có:
- Gọi N là trung điểm của AB.
- Vì I là trung điểm của BC nên IN // AH (vì I và H đều là trung điểm của các cạnh của tam giác ABC).
- Ta có: AN = NB (vì N là trung điểm của AB).
- Vì IN // AH và AN = NB nên tam giác INB và tam giác AHM là hai tam giác đồng dạng.
- Do đó, ta có: ∠INB = ∠AHM.
- Nhưng ∠INB = 90° (vì IN vuông góc với AB).
- Vậy, ta có: ∠AHM = 90°.
- Từ đó, ta suy ra AH vuông góc với BM.
- Nhưng BM = MC (vì M là trung điểm của AC).
- Vậy, ta có: AH vuông góc với MC.
- Gọi D' là điểm đối xứng của D qua M.
- Ta có: MD' = MD (vì D' là điểm đối xứng của D qua M).
- Vì MD' vuông góc với BC và MD vuông góc với BC nên tam giác MBD' và tam giác MCD là hai tam giác vuông cân.
- Do đó, ta có: MB = MD' và MC = MD.
- Từ đó, ta suy ra MB.MC = MD.MD' = MD^2.
- Nhưng MD^2 = DC^2 - MC^2 (theo định lí Pythagoras).
- Vậy, ta có: MB.MC = DC^2 - MC^2.
a: góc AHC=góc AKC=90 độ
=>AHKC nội tiếp
b: Sửa đề; AB*HC=AC*HA
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>AB*HC=AC*HA
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AB^2=BC^2-AC^2=12^2-8^2=80\)
hay \(AB=4\sqrt{5}cm\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot12=8\cdot4\sqrt{5}=32\sqrt{5}\)
\(\Leftrightarrow AH=\dfrac{32\sqrt{5}}{12}=\dfrac{8\sqrt{5}}{3}cm\)
Vậy: \(AB=4\sqrt{5}cm\); \(AH=\dfrac{8\sqrt{5}}{3}cm\)
c)
Ta có: D và C đối xứng nhau qua A(gt)
nên A là trung điểm của DC
Xét ΔBDC có
BA là đường cao ứng với cạnh DC(BA⊥DC)
BA là đường trung tuyến ứng với cạnh DC(A là trung điểm của DC)
Do đó: ΔBDC cân tại B(Định lí tam giác cân)
⇒\(\widehat{D}=\widehat{C}\)
Xét ΔADE vuông tại E và ΔACH vuông tại H có
AD=AC(A là trung điểm của DC)
\(\widehat{D}=\widehat{C}\)(cmt)
Do đó: ΔADE=ΔACH(cạnh huyền-góc nhọn)
⇒AE=AH(hai cạnh tương ứng)
mà AH là bán kính của đường tròn (A;AH)
nên AE là bán kính của đường tròn (A;AH)
Xét (A;AH) có
AE là bán kính(cmt)
AE⊥BD tại E(gt)
Do đó: BD là tiếp tuyến của đường tròn(A;AH)(Dấu hiệu nhận biết tiếp tuyến đường tròn)
a, ∆ABE cân vì BI vừa là đường cao vừa là đường phân giác
b, Chứng minh K là trực tâm ∆ABE => EK ⊥ AB
c, Chứng minh: A F B ^ + A B F ^ = K B C ^ + B K C ^ = 90 0
=> F A B ^ = 90 0
=> FA là tiếp tuyến (O)
d, C di chuyển trên (O) thì E di chuyển trên (B;BA)
tại sao BI lại là đường cao và tại sao k lại là trực tâm trong khi đó ac chưa vuông góc với eb?