K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2019

A M N H C B

Cho tam giác ABC có MN =15 cm  NK =12 cm  

Xét: Tam giác AHB (HBN) = 90 độ HM = đc

Xét tam giác AHC (AHC = 90 độ) có HN là đường cao

=> AH =An = AC  (2)

Kết luận sơ sơ: Từ (1) (2) AM AB =AN=AC

...................... còn lại chịu -.-

~Study well~ :)

22 tháng 7 2019

cậu làm sai rồi M là trung điểm của BC mà, cậu sai ngay từ cái hình rồi.

5 tháng 8 2018

Gíup em vs ạ

7 tháng 7 2020

A B C M N K

a) Áp dụng hệ thức lượng △NMC vuông tại N ta có :

    \(\frac{1}{MN^2}+\frac{1}{NC^2}=\frac{1}{NK^2}\)

\(\Leftrightarrow\frac{1}{15^2}+\frac{1}{NC^2}=\frac{1}{12^2}\)

\(\Leftrightarrow NC=20\)cm

Ta có : △ABC vuông tại A có AM là đường trung tuyến (M thuộc BC)

=> AM = MC

=> △AMC cân tại M

=> MN đồng thời vừa là đường cao vừa là đường trung tuyến

=> AN = NC = \(\frac{AC}{2}\)

Mà NC = 20cm

=> AC = 40cm 

=> \(S_{AMC}=\frac{40.15}{2}=300\left(cm^2\right)\)

Ta có : \(S_{AMC}=\frac{1}{2}S_{ABC}\)

vì có cùng độ dài đường cao và \(MC=\frac{1}{2}BC\)

Vậy \(S_{ABC}=600cm^2\)

20 tháng 7 2016

bạn tự vẽ hình nhé

b) Vì N là hình chiếu của M trên AC nên MN vuông góc với AC

=> MN//AB

Xét ΔABC có M là trung điểm của BC 

                      MN//AB 

=> N là trung điểm của AC

Xét ΔABC có M là trung điểm của BC

                      N là trung điểm của AC

=> MN là đường trung bình của ΔABC

=> MN = 1/2.AB

=> AB = 30 cm

Xét ΔMNC vuông tại N có NK là đường cao

=> \(\frac{1}{NK^2}=\frac{1}{MN^2}+\frac{1}{NC^2}\)

=> \(\frac{1}{144}=\frac{1}{225}+\frac{1}{NC^2}\)

=> NC = 20 cm

=> AC = 40 cm

=> diện tích ABC = AB.AC/2 = 30.40:2 = 600 cm2

Chúc bạn làm bài tốt

20 tháng 7 2017

M là trug điểm BC

MN //AB                  

nên MN là đường trung bình của AB , AB=2MN=30 

- Áp dụng hệ thức lương vào tam giác vuông MNC (vuông tại N)

   ta có \(\frac{1}{NK^2}=\frac{1}{NM^2}+\frac{1}{NC^2}\)

=> ta tìm dc NC   mà AC=2NC

vậy ta biết dc 2 cạnh AB và AC

diện h tam giác \(=\frac{1}{2}.AB.AC\)

28 tháng 8 2021

a, Xét tứ giác AMHN có : ^AMH = ^MAN = ^ANH = 900

Vậy tứ giác AMHN là hình chữ nhật 

b, Ta có : \(AH^2=AM.AB\)( hệ thức lượng ) (1)

\(AH^2=AN.AC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Xét tam giác AMN và tam giác ACB ta có : 

^A _ chung 

\(\frac{AM}{AC}=\frac{AN}{AB}\)( cmt )

Vậy tam giác AMN ~ tam giác ACB ( c.g.c ) 

\(\Rightarrow\frac{AM}{AC}=\frac{MN}{BC}\)(3) 

Theo định lí Pytago tam giác ABC vuông tại A 

\(BC=\sqrt{AB^2+AC^2}=\sqrt{36+64}=10\)cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{48}{10}=\frac{24}{5}\)cm 

Lại có : \(AH^2=AM.AB\)( cmt ) \(\Rightarrow AM=\frac{AH^2}{AB}=\frac{96}{25}\)cm 

\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{MN}{BC}\Rightarrow MN=\frac{AM.BC}{AC}=\frac{24}{5}\)cm 

c, Vì E là trung điểm BH mà tam giác BMH vuông tại M

=> ME là đường trung tuyến 

=> \(ME=\frac{1}{2}BH\)(4) 

Vì F là trung điểm HC mà tam giác HNC vuông tại N 

=> NF là đường trung tuyến 

=> \(NF=\frac{1}{2}HC\)(5) 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm (6) 

=> \(HC=BC-HB=10-\frac{18}{5}=\frac{32}{5}\)cm (7)

Thay (6) vào (4) ta được : \(ME=\frac{1}{2}BH=\frac{1}{2}.\frac{18}{5}=\frac{18}{10}=\frac{9}{5}\)cm 

Thay (7) vào (5) ta được : \(NF=\frac{1}{2}HC=\frac{1}{2}.\frac{32}{5}=\frac{32}{10}=\frac{16}{5}\)cm 

d, mình chưa tìm ra dữ kiện