Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
a:Xét ΔAHB vuông tại H có
cosB=BH/AB
=>12/AB=cos60=1/2
=>AB=24(cm)
BC=BH+CH=30(cm)
Xét ΔABC có \(cosB=\dfrac{BA^2+BC^2-AC^2}{2\cdot BA\cdot BC}\)
=>\(24^2+30^2-AC^2=24\cdot30=720\)
=>\(AC=6\sqrt{21}\left(cm\right)\)
b: ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>AH=12*căn 3(cm)
Xét ΔMNP vuông tại M có
\(MN=NP\cdot\dfrac{1}{2}=5\cdot\dfrac{1}{2}=2.5\left(cm\right)\)
\(\Leftrightarrow MP=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
Bài 1:
a) Ta có:
\(tanB=\dfrac{AC}{AB}\Rightarrow\dfrac{AC}{AB}=\dfrac{5}{2}\)
\(\Rightarrow AC=\dfrac{AB\cdot5}{2}=\dfrac{6\cdot5}{2}=15\)
b) Áp dụng Py-ta-go ta có:
\(BC^2=AB^2+AC^2=6^2+15^2=261\)
\(\Rightarrow BC=\sqrt{261}=3\sqrt{29}\)
Bài 2:
\(\left\{{}\begin{matrix}sinM=sin40^o\approx0,64\Rightarrow cosN\approx0,64\\cosM=cos40^o\approx0,77\Rightarrow sinN\approx0,77\\tanM=tan40^o\approx0,84\Rightarrow cotN\approx0,84\\cotM=cot40^o\approx1,19\Rightarrow tanN\approx1,19\end{matrix}\right.\)
Áp dụng định lí Pi-ta-go cho \(\Delta ABC\)vuông tại A, ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow AC^2=4a^2-a^2\)
\(\Leftrightarrow AC=\sqrt{3a^2}=a\sqrt{3}\)
a) Tỉ số lượng giác của góc B là:
\(\sin B=\frac{a\sqrt{3}}{2a}=\frac{\sqrt{3}}{2}\)
\(\cos B=\frac{a}{2a}=\frac{1}{2}\)
\(\tan B=\frac{a\sqrt{3}}{a}=\sqrt{3}\)
\(\cot B=\frac{a}{a\sqrt{3}}=\frac{1}{\sqrt{3}}\)
b) Tỉ số lượng giác của góc C là:
\(\sin C=\cos B=\frac{1}{2}\)( Định lí )
\(\cos C=\sin B=\frac{\sqrt{3}}{2}\)( Định lí )
\(\tan C=\cot B=\frac{1}{\sqrt{3}}\)( Định lí )
\(\cot C=\tan B=\sqrt{3}\)( Định lí )
Chúc bn hok tốt
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{1}{2}\)
nên \(\widehat{C}=30^0\)
hay \(\widehat{B}=60^0\)
Xét ΔBAC vuông tại A có
\(\sin\widehat{C}=\cos\widehat{B}=\dfrac{1}{2}\)
\(\cos\widehat{C}=\sin\widehat{B}=\dfrac{\sqrt{3}}{2}\)
\(\tan\widehat{C}=\cot\widehat{B}=\dfrac{\sqrt{3}}{3}\)
\(\cot\widehat{C}=\tan\widehat{B}=\sqrt{3}\)