K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB=CD và AB//CD

b: ABCD là hình bình hành

=>AD//BC và AD=BC

 

a: Xét ΔMAB và ΔMCD co

MA=MC

góc AMB=góc CMD

MB=MD

=>ΔMAB=ΔMCD

=>AB=CD và góc MAB=góc MCD

=>AB//CD

=>AC vuông góc DC

b: Xét tứ giac ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AD//BC và AD=BC

3 tháng 5 2022

a/

\(BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5cm\) (Pitago)

b/

Ta có

\(AM=\dfrac{BC}{2}=\dfrac{5}{2}=2,5cm\) (Trong tg vuông trung tuyến thuộc cạnh huyền thì bằng nửa cạnh huyền)

\(AG=\dfrac{2}{3}AM=\dfrac{2}{3}.\dfrac{5}{2}=\dfrac{5}{3}cm\)  (trong tg 3 đường trung tuyến đồng quy tại 1 điểm và điểm đó cách đỉnh 1 khoảng bằng 2/3 độ dài đường trung tuyến mà trung tuyến đó đi qua)

c/

Xét tg ABN và tg CDN có

AN=CN (gt); BN=DN (gt)

\(\widehat{ANB}=\widehat{CND}\) (Góc đối đỉnh)

=> tg ABN=tg CDN (c.g.c)=> \(\widehat{BAN}=\widehat{DCN}=90^o\Rightarrow CD\perp AC\)

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB=CD và AB//CD

=>AC vuông góc CD

b: ABCD là hình bình hành

=>AD//BC và AD=BC

 

a: Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

=>ABCD là hình bình hành

=>AB=CD và AB//CD

=>AC vuông góc CD

b: ABCD là hình bình hành

=>AD//BC và AD=BC

c: góc ABM=góc CDM=góc CDB

mà góc CDB>góc CBM(CB>CD)

nên góc ABM>góc CBM

 

28 tháng 3 2017

Kết bạn với tớ nhé

a: XétΔABC có \(\widehat{B}=\widehat{C}\)

nên ΔABC cân tại A

mà AD là tia phân giác

nên AD là đường cao

b: Xét ΔABE và ΔACF có 

AB=AC

\(\widehat{ABE}=\widehat{ACF}\)

BE=CF

Do đó: ΔABE=ΔACF

Suy ra: AE=AF