K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC

nên HB<HC

b: Xét ΔAHB vuông tại H và ΔAHM vuông tạiH có

AH chung

HB=HM

=>ΔAHB=ΔAHM

=>AB=AM

mà góc ABM=60 độ

nên ΔABM đều

10 tháng 5 2023

làm như kiểu này nè... xem thêm

 

a: góc C=90-60=30 độ<góc B

=>AB<AC

=>HB<HC

b: Xet ΔAHB vuông tại H và ΔAHM vuông tại H có

AH chung

HB=HM

=>ΔAHB=ΔAHM

=>AB=AM

mà góc B=60 độ

nên ΔAMB đều

25 tháng 4 2016

a. Xét ΔABD và ΔBCE có: ∠ ADB = ∠ AEC = 90º (gt)

BA = AC (gt)

∠BAC chung

⇒ ΔABD = ΔACE (cạnh huyền – góc nhọn)

b). ΔABD = ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)

mặt khác: ∠ABC = ∠ACB (ΔABC cân tại A )

⇒ ∠ABC  – ∠ABD = ∠ACB – ∠ACE => ∠HBC = ∠HCB

⇒ ΔBHC là tam giác cân

c. ΔHDC vuông tại D nên HD <HC

mà HB = HC (ΔAIB cân tại H)

=> HD < HB

d. Gọi I là giao điểm của BN và CM

Xét Δ BNH và Δ CMH có:

BH = CH (Δ BHC cân tại H)

∠ BHN = CHM(đối đỉnh)

NH = HM (gt)

=> Δ BNH = Δ CMH (c.g.c) ⇒ ∠HBN = ∠ HCM

Lại có: ∠ HBC = ∠ HCB (Chứng minh câu b)

⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM => ∠IBC = ∠ICB

⇒ IBC cân tại I ⇒ IB = IC   (1)

Mặt khác ta có:  AB =  AC (Δ ABC cân tại A)  (2)

HB = HC (Δ HBC cân tại H) (3)

Từ (1); (2) và (3) => 3 điểm I; A; H cùng nằm trên đường trung trực của BC

=> I; A; H thẳng hàng =>   các đường thẳng BN; AH; CM đồng quy

17 tháng 4 2017

Ê mày bị điên ak mà tự làm tự trả lời

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

a: Xét ΔAHB vuông tại H và ΔAHE vuông tại H có

AH chung

HB=HE

=>ΔAHB=ΔAHE

b: Xét tứ giác AECF có

I là trung điểm chung của AC và EF

=>AECF là hình bình hành

=>AF//EC

=>AF vuông góc AH

c: AECF là hình bình hành

=>CF=AE>HA

a: Xet ΔAHN và ΔCHM có

AH=CH

góc HAN=góc HCM

AN=CM

=>ΔAHN=ΔCHM

b: Xet ΔAHM và ΔBHN co

AH=BH

góc HAM=góc HBN

AM=BN

=>ΔAHM=ΔBHN

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BCa)Chứng minh: ∆AHB = ∆AHC ;b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cânc)Chứng minh MN // BC ;d)Chứng minh AH2 + BM2 = AN2 + BH25)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC.a)Chứng minh : ADBDABˆˆ=;b)Chứng minh : AD là phân giác của góc HACc) Chứng minh : AK = AH.6)Cho tam giác cân ABC có AB = AC = 5...
Đọc tiếp

4)Cho tam giác ABC cân tại A. Vẽ AH ⊥ BC

a)Chứng minh: ∆AHB = ∆AHC ;

b)Vẽ HM ⊥ AB, HN ⊥ AC. Chứng minh ∆AMN cân

c)Chứng minh MN // BC ;

d)Chứng minh AH2 + BM2 = AN2 + BH2

5)Cho tam giác ABC vuông tại A, có AB < AC. Trên cạnh BC lấy điểm D sao cho BD = BA. Kẻ AH vuông góc với BC, kẻ DK vuông góc với AC

.a)Chứng minh : ADBDABˆˆ=;

b)Chứng minh : AD là phân giác của góc HAC

c) Chứng minh : AK = AH.

6)Cho tam giác cân ABC có AB = AC = 5 cm , BC = 8 cm . Kẻ AH vuông góc với BC (H ∈ BC)

a) Chứng minh : HB = HC và ·CAH = ·BAH

b)Tính độ dài AH ?

c)Kẻ HD vuông góc AB ( D ∈AB), kẻ HE vuông góc với AC(E ∈AC). Chứng minh : DE//BC

7)Cho tam giác ABC , có AC < AB , M là trung điểm BC, vẽ phân giác AD. Từ M vẽ đường thẳng vuông góc với AD tại H, đường thẳng này cắt tia AC tại F ,cắt AB tại E.

Chứng minh rằng :a) ∆ AFE cân

b) Vẽ đường thẳng Bx // EF, cắt AC tại K. Chứng minh rằng : KF = BE

c) Chứng minh rằng : AE = (AB+AC):2

8) Cho tam giác DEF vuông tại D, phân giác EB . Kẻ BI vuông góc với EF tại I . Gọi H là giao điểm của ED và IB .

Chứng minh : a) ΔEDB = Δ EIB ;

b) HB = BF

c) Gọi K là trung điểm của HF. Chứng minh 3 điểm E, B, K thẳng hàng ;

d) DI // HF

9) Cho tam giác ABC vuông tại A . Đường phân giác của góc B cắt AC tại H . Kẻ HE vuông góc với BC. Đường thẳng EH và BA cắt nhau tại I .

a)Chứng minh rẳng : ΔABH = ΔEBH ;

b)Chứng minh BH là trung trực của AE

c)Chứng minh BH vuông góc với IC . Có nhận xét gì về tam giác IBC

10) Cho ΔABC vuông tại A, M là trung điểm BC, vẽ MH ⊥AB. Trên tia đối tia MH lấy điểm K sao cho MK = MH.

a).CMR: ΔMHB = ΔMKC

b).CMR: AC = HK

c).CH cắt AM tại G, tia BG cắt AC tại I. CMR: I là trung điểm AC

11) Cho ∆ ABC cân tại A. Trên BC lấy D và E sao cho BD = CE ( D và E nằm ngoài tam giác ). Kẻ tia DI ⊥ AB,kẻ tia EK ⊥AC, DI cắt EK tại H.

a) CMR: ∆ ABE = ∆ ACD.

b) CMR: HD = HE.

c)Gọi O là giao điểm của CI và BK ;∆ OED là tam giác gì ? chứng minh.

d) CMR: AO là tia phân giác của góc BAC ?

e) A ,O , H thẳng hàng

12) Cho tam giác ABC cân ở A có AB = AC = 5 cm; kẻ AH ⊥ BC ( H ∈ BC)

a) Chứng minh BH = HC và BAH = CAH

b) Tính độ dài BH biết AH = 4 cm

c) Kẻ HD ⊥ AB ( d ∈ AB), kẻ EH ⊥ AC (E ∈ AC).

d) Tam giác ADE là tam giác gì? Vì sao?

 


 

5
14 tháng 2 2016

nhiều bài quá bạn ơi duyệt đi

phê răng mi viết đc rứa