K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

a, \(BC=BH+CH=10\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AB=\sqrt{BH\cdot BC}=6\left(cm\right)\\AC=\sqrt{CH\cdot BC}=8\left(cm\right)\end{matrix}\right.\)

\(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\approx\sin53^0\Rightarrow\widehat{B}\approx53^0\\ \Rightarrow\widehat{C}\approx90^0-53^0=37^0\)

b, Vì \(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\) nên AMHN là hcn

Do đó \(MN=AH=\dfrac{AB\cdot AC}{BC}=4,8\left(cm\right)\)

Áp dụng HTL: \(AM\cdot MB=HM^2;AN\cdot NC=HN^2\)

Áp dụng PTG: \(HM^2+HN^2=MN^2=AH^2\)

Vậy \(AM\cdot MB+AN\cdot NC=AH^2\) 

23 tháng 7 2023

a) \(AH^2=BH.CH=3,6.6,4=23,04\)

\(\Rightarrow AH=4,8\left(cm\right)\)

\(AC^2=AH^2+HC^2=23,04+40,96=64\)

\(\Rightarrow AC=8\left(cm\right)\)

\(AB^2=AH^2+BH^2=23,04+12,96=36\)

\(\Rightarrow AB=6\left(cm\right)\)

\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)

\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)

\(\Rightarrow C=90^o-53^o=37^o\)

b) Xét Δ vuông ABH, có đường cao DH ta có :

\(AH^2=AD.AB\left(1\right)\)

Tương tự  Δ vuông ACH :

\(AH^2=AE.AC\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)

29 tháng 10 2023

a: BC=BH+CH

=3,6+6,4=10(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH^2=3,6\cdot6,4=23,04\)

=>\(AH=\sqrt{23,04}=4,8\left(cm\right)\)

ΔAHC vuông tại H

=>\(AC^2=AH^2+HC^2\)

=>\(AC^2=4,8^2+6,4^2=64\)

=>AC=8(cm)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}\simeq53^0\)

ΔABC vuông tại A

=>\(\widehat{ABC}+\widehat{ACB}=90^0\)

=>\(\widehat{ACB}\simeq90^0-53^0=37^0\)

b: Sửa đề; \(AM\cdot MB+AN\cdot NC=MN^2\)

Xét tứ giác AMHN có

\(\widehat{AMH}=\widehat{ANH}=\widehat{MAN}=90^0\)

=>AMHN là hình chữ nhật

Xét ΔHAB vuông tại H có HM là đường cao

nên \(AM\cdot MB=HM^2\)

Xét ΔHAC vuông tại H có HN là đường cao

nên \(AN\cdot NC=HN^2\)

\(AM\cdot MB+AN\cdot NC=HM^2+HN^2=MN^2\)

c: AK\(\perp\)MN

=>\(\widehat{ANM}+\widehat{KAC}=90^0\)

mà \(\widehat{ANM}=\widehat{AHM}\)(AMHN là hình chữ nhật)

nên \(\widehat{AHM}+\widehat{KAC}=90^0\)

mà \(\widehat{AHM}=\widehat{B}\left(=90^0-\widehat{HAB}\right)\)

nên \(\widehat{B}+\widehat{KAC}=90^0\)

mà \(\widehat{B}+\widehat{KCA}=90^0\)

nên \(\widehat{KAC}=\widehat{KCA}\)

=>KA=KC

\(\widehat{KAC}+\widehat{KAB}=90^0\)

\(\widehat{KCA}+\widehat{KBA}=90^0\)

mà \(\widehat{KAC}=\widehat{KCA}\)

nên \(\widehat{KAB}=\widehat{KBA}\)

=>KA=KB

mà KA=KC

nên KB=KC

=>K là trung điểm của BC

31 tháng 10

Có cái nịt

 

27 tháng 10 2023

a: Xét ΔABH vuông tại H có HD là đường cao

nên \(BD\cdot BA=BH^2\)

=>\(BA\cdot3,6=6^2=36\)

=>BA=10(cm)

AD+DB=BA

=>AD+3,6=10

=>AD=6,4(cm)

ΔAHB vuông tại H

=>\(HA^2+HB^2=AB^2\)

=>\(HA=\sqrt{10^2-6^2}=8\left(cm\right)\)

Xét ΔAHB vuông tại H có HD là đường cao

nên \(HD\cdot AB=HA\cdot HB\)

=>\(HD\cdot10=6\cdot8=48\)

=>HD=4,8(cm)

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

=>\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE và ΔACB có

AD/AC=AE/AB

\(\widehat{DAE}\) chung

Do đó: ΔADE đồng dạng với ΔACB

b: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

Suy ra: AH=DE

8 tháng 11 2022

Giỏi vậy 

6 tháng 11 2021

a, \(BC=BH+HC=10\left(cm\right)\)

Áp dụng HTL: \(\left\{{}\begin{matrix}AH=\sqrt{BH\cdot HC}=4,8\left(cm\right)\\AB=\sqrt{BH\cdot BC}=6\left(cm\right)\end{matrix}\right.\)

\(\sin HCA=\dfrac{AB}{BC}=\dfrac{3}{5}\approx\sin37^0\\ \Rightarrow\widehat{HCA}\approx37^0\)

1 tháng 9 2021

a, Xét tam giác AHB vuông tại H, đường cao MH 

\(AH^2=AM.AB\)( hệ thức lượng ) (1) 

Xét tam giác AHC vuông tại H, đường cao HN 

\(AH^2=AN.AC\)( hệ thức lượng ) (2) 

Từ (1) ; (2) suy ra : \(AM.AB=AN.AC\)(3) 

b, Xét tam giác AMN và tam giác ACB ta có : 

^A _ chung 

\(\left(3\right)\Rightarrow\frac{AM}{AC}=\frac{AN}{AB}\)

Vậy tam giác AMN ~ tam giác ACB ( c.g.c )

\(\frac{MN}{BC}=\frac{AM}{AC}\)(4) 

Ta có : BC = HB + HC = 9 + 4 = 13 cm 

Xét tam giác ABC vuông tại A, đường cao AH

* Áp dụng hệ thức : \(AC^2=HC.BC=9.13=117\Rightarrow AC=3\sqrt{13}\)cm 

Theo định lí Pytago : \(AB=\sqrt{BC^2-AC^2}=\sqrt{169-\left(3\sqrt{13}\right)^2}=2\sqrt{13}\)cm 

* Áp dụng hệ thức : \(AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{2\sqrt{13}.3\sqrt{13}}{13}=6\)cm 

lại có : \(AH^2=AM.AB\)cma => \(AM=\frac{36}{2\sqrt{13}}=\frac{18\sqrt{13}}{13}\)cm 

Thay vào (4) ta được : \(\frac{MN}{13}=\frac{\frac{18\sqrt{13}}{13}}{3\sqrt{13}}=6\)cm 

c, Lại có : \(AH^2=AN.AC\)cma => \(AN=\frac{36}{3\sqrt{13}}=\frac{12\sqrt{13}}{13}\)cm 

Ta có : \(S_{AMN}=\frac{1}{2}AN.AM=\frac{1}{2}.\frac{12\sqrt{13}}{13}.\frac{18\sqrt{13}}{13}=\frac{108}{13}\)cm 2

\(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.2\sqrt{13}.3\sqrt{13}=39\)cm 2

Do \(S_{AMN}+S_{BMNC}=S_{ABC}\Rightarrow S_{BMNC}=S_{ABC}-S_{AMN}\)

\(=39-\frac{108}{13}=\frac{399}{13}\)cm2