K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=4\cdot9=36\)

hay AH=6(cm)

Vậy: AH=6cm

4 tháng 4 2021

đủ đề chưa bạn

b) Ta có: HB+HC=BC(H nằm giữa B và C)

nên BC=4+9=13(cm)

Xét ΔBAC có AH là đường cao ứng với cạnh CB(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{6\cdot13}{2}=39\left(cm^2\right)\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=4\cdot9=36\)

hay AH=6(cm)

Vậy: Độ dài đường cao là AH=6cm

 

4 tháng 4 2021

tự vẽ hình 

ta có <HBA+<BAH= 90\(^0\)(vì tam giác ABH vg tại H)

Có <BAH+ <HAC= 90\(^0\)(vì tam giác ABC vg tại A)

=> <HBA=<HAC 

Xét tam giác BAH và ACH

<BHA=<AHC\(\left(90^0\right)\)

<ABH=<HAC

=> Tam giác BAH đồng dạng với tam giác ACH

=> BH/AH=AH/CH=> AH^2= BH*CH=4*9=36 cm 

b, ta có BC=BH+CH=4+9=13 cm 

S(ABC) = AH*BC=36*13=468 cm\(^2\)

 

4 tháng 4 2021

cảm ơn bạn

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow AB^2=4\cdot9=36\)

hay AB=6(cm)

Vậy: AB=6cm

18 tháng 4 2023

E cảm ơn nhiều ạ

4 tháng 4 2021

undefined

a) Xét ΔHBA vuông tại H và ΔHAC vuông tại H có 

\(\widehat{HBA}=\widehat{HAC}\left(=90^0-\widehat{HAB}\right)\)

Do đó: ΔHBA\(\sim\)ΔHAC(g-g)

25 tháng 7 2018

Giup minh vs

https://olm.vn/hoi-dap/question/1269512.html

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: BC=căn 3^2+4^2=5cm

AH=3*4/5=2,4cm

c: Xét ΔAHB vuông tại H và ΔCHA vuông tại H có

góc HAB=góc HCA

=>ΔAHB đồng dạng với ΔCHA

=>S AHB/S CHA=(AB/CA)^2=9/16